Publications

I can also be found on Google Scholar.

2020

Y. Dubois, G. Dagan, D. Hupkes and E. Bruni. Location Attention for Extrapolation to Longer Sequences. To appear at ACL2020

R.D. Luna, E.M. Ponti, D. Hupkes and Bruni E. Internal and External Pressures on Language Emergence: Least Effort, Object Constancy and Frequency. arXiv preprint arXiv:2004.03868. 2020

B. Keresztury, E. Bruni. Compositional properties of emergent languages in deep learning. arXiv preprint arXiv:2001.08618. 2020

A. Soeteman, D. Gutierrez, E. Bruni and E. Shutova. Modelling form-meaning systematicity with linguistic and visual features. In Proceedings of AAAI. 2020

M. v. d. Meer, M. Pirotta, E. Bruni. Exploiting Language Instructions for Interpretable and Compositional Reinforcement Learning. arXiv preprint arXiv:2001.04418. 2020

G. Dagan, D. Hupkes and E. Bruni. Co-evolution of language and agents in referential games. arXiv preprint arXiv:2001.03361. 2020

T. A. Unger, E. Bruni. Incentivizing the Emergence of Grounded Discrete Communication Between General Agents. arXiv preprint arXiv:2001.01772. 2020

2019

B. Kolb, L. Lang, H. Bartsch, A. Gansekoele, R. Koopmanschap, L. Romor, D. Speck, M. Mul, E. Bruni Learning to Request Guidance in Emergent Communication. EMNLP-IJCNLP Workshop LANTERN. 2019

D. Hupkes, V. Dankers, M. Mul and E. Bruni. The compositionality of neural networks: integrating symbolism and connectionism. Journal of Artificial Intelligence. To appear

M. Mul, D. Bouchacourt and E. Bruni. Mastering emergent language: learning to guide in simulated navigation. arXiv preprint arXiv:1908.05135. 2019

D. Ulmer, D. Hupkes and E. Bruni. Assessing incrementality in sequence-to-sequence models. ACL Workshop Repl4NLP. 2019

K. Korrel, D. Hupkes, V. Dankers and E. Bruni. Transcoding compositionally: using attention to find more generalizable solutions. ACL Workshop BlackboxNLP. 2019

J. Baan, j. Leible, M. Nikolaus, D. Rau, T. Baumgärtner, D. Hupkes and E. Bruni. On the Realization of Compositionality in Neural Networks. ACL Workshop BlackboxNLP. 2019

J. Haber, T. Baumgärtner, E. Takmaz, L. Gelderloos, E. Bruni and Raquel Fernández. The PhotoBook dataset: Building common ground through visually grounded dialogue. ACL 2019

R. Leonandya, E. Bruni, D. Hupkes, G. Kruszewski The Fast and the Flexible: training neural networks to learn to follow instructions from small data. IWCS 2019

D. Hupkes, A.K. Singh, K. Korrel, G. Kruszewski, and, E. Bruni. Learning compositionally through attentive guidance. CICLing 2019

A. Venkatesh, R. Shekhar, T. Baumgärtner, E. Bruni, B. Plank, R. Bernardi and R. Fernández. Beyond task success: A closer look at jointly learning to see, ask, and GuessWhat. NAACL 2019

2018

G. Bani, D. Belli, G. Dagan, A. Geenen, A. Skliar, A. Venkatesh, T. Baumgärtner, E. Bruni, and R. Fernández. Adding object detection skills to visual dialogue agents.. In Proceedings of the Workshop on Shortcomings in Vision and Language (SiVL) at ECCV, 2018

R. Shekkar, T. Baumgartner, A. Venkatesh, E. Bruni, R. Bernardi, and R. Fernandez. Ask No More: Deciding when to guess in referential visual dialogue. COLING 2018

2017

E. Bruni and R. Fernandez. Adversarial evaluation for open-domain dialogue generation. Proceedings of SIGdial 2017

Korsuk Sirinukunwattana et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. Jama 318.22 (2017): 2199-2210

Korsuk Sirinukunwattana et al. Gland Segmentation in Colon Histology Images: The GlaS Challenge Contest. Medical Image Analysis, 2016

2015

A.J. Anderson, E. Bruni, A. Lopopolo, M. Poesio and M. Baroni. Reading visually embodied meaning from the brain: visually grounded computational models decode visual-object mental imagery induced by written text. Neuroimage 2015

A. Sartori, V. Yanulevskaya, A. A. Salah, J. Uijlings, E. Bruni and N. Sebe. Affective Analysis of Professional and Amateurs Abstract Paintings Using Statistical Analysis and Art Theory. In ACM transactions on Interactive Intelligent Systems, 2015

2014

F. Celli, E. Bruni and B. Lepri. Automatic Personality and Interaction Style Recognition from Facebook Profile Pictures. Proceedings of the ACM Multimedia 2014

A. Lazaridou, E. Bruni and M. Baroni. Is this a wampimuk? Cross-modal mapping between distributional semantics and the visual world. Proceedings of the ACL 2014

E. Bruni, N. K. Tran and M. Baroni. Multimodal Distributional Semantics. Journal of Artificial Intelligence Research 49: 1-47 2014. IJCAI-JAIR Best Paper Prize

2013

A. J. Anderson, E. Bruni, U. Bordignon, M. Poesio and M. Baroni. Of words, eyes and brains: Correlating image-based distributional semantic models with neural representations of concepts. Proceedings of the EMNLP 2013

E. Bruni, U. Bordignon, A. Liska, J. Uijlings and I. Sergienya. VSEM: An open library for visual semantics representation. Proceedings of the ACL 2013 (System demonstration)

2012

Bruni, J. Uijlings, M. Baroni and N. Sebe Distributional Semantics with Eyes: Using Image Analysis to Improve Computational Representations of Word Meaning. Proceedings of the ACM Multimedia 2012

V. Yanulevskaya, J. Uijlings, E. Bruni, A. Sartori, F. Bacci, N. Sebe, E. Zamboni and D. Melcher. In the eye of the beholder: Employing statistical analysis and eye tracking for analyzing abstract paintings (Dataset). V. Yanulevskaya, J. Uijlings, E. Bruni, A. Sartori, F. Bacci, N. Sebe, E. Zamboni and D. Melcher Proceedings of the ACM Multimedia 2012

E. Bruni, G. Boleda, M. Baroni and N. K. Tran. Distributional Semantics in Technicolor. Proceedings of the ACL 2012 (50th Annual Meeting of the Association for Computational Linguistics), East Stroudsburg PA: ACL.

E. Bruni, A. Ferrari, N. Seyff and G. Tolomei. Automatic Analysis of Multimodal Requirements: A Research Preview. REFSQ’12

2011

E. Bruni, G.B. Tran and M. Baroni. Distributional semantics from text and images. Proceedings of the EMNLP 2011 Geometrical Models for Natural Language Semantics (GEMS)

PhD Thesis

Elia Bruni. Multimodal distributional semantics. 2013. PhD Thesis, University of Trento.