The compositionality of neural networks: integrating
symbolism and connectionism

Dieuwke Hupkes DIEUWKEHUPKESQGMAIL.COM
Institute for Logic, Language and Computation
University of Amsterdam

Verna Dankers VERNA_DANKERS@HOTMAIL.COM
Mathijs Mul MATHIJSMULQGMAIL.COM
University of Amsterdam

Elia Bruni ELIA.BRUNIQGMAIL.COM
University of Pompeu Fabra

Abstract

Despite a multitude of empirical studies, little consensus exists on whether neural networks
are able to generalise compositionally, a controversy that, in part, stems from a lack of agreement
about what it means for a neural model to be compositional. As a response to this controversy, we
present a set of tests that provide a bridge between, on the one hand, the vast amount of linguistic
and philosophical theory about compositionality and, on the other, the successful neural models
of language. We collect different interpretations of compositionality and translate them into five
theoretically grounded tests that are formulated on a task-independent level. In particular, we
provide tests to investigate (i) if models systematically recombine known parts and rules (ii) if
models can extend their predictions beyond the length they have seen in the training data (iii) if
models’ composition operations are local or global (iv) if models’ predictions are robust to synonym
substitutions and (v) if models favour rules or exceptions during training. To demonstrate the
usefulness of this evaluation paradigm, we instantiate these five tests on a highly compositional
data set which we dub PCFG SET and apply the resulting tests to three popular sequence-to-
sequence models: a recurrent, a convolution based and a transformer model. We provide an in
depth analysis of the results, that uncover the strengths and weaknesses of these three architectures
and point to potential areas of improvement.

1. Introduction

The advancements of distributional semantics of the word level allowed the field of natural language
processing to move from discrete mathematical methods to models that use continuous numerical
vectors (see e.g. Clark, 2015; Erk, 2012; Turney and Pantel, 2010). Such continuous vector represen-
tations operationalise the distributional semantic hypothesis, stating that semantically similar words
have similar contextual distributions (e.g. Miller and Charles, 1991), by keeping track of contextual
information from large textual corpora. They can then act as surrogates for word meaning and be
used, for example, to quantify the degree of semantic similarity between words, by means of simple
geometric operations (Clark, 2015). Words represented in this way can be an integral part of the
computational pipeline and have proven to be useful for almost all natural language processing tasks
(see e.g. Hirschberg and Manning, 2015).

After the introduction of continuous word representations, a logical next step involved under-
standing how to compose these representations to obtain representations for phrases, sentences and
even larger pieces of discourse. Some early approaches to do so stayed close to formal symbolic
theories of language and sought to explicitly model semantic composition by finding a composi-
tion function that could be used to combine word representations. The adjective-noun compound

‘blue sky’, for instance, would be represented as a new vector resulting from the composition of
the representations for ‘blue’ and ‘sky’. Examples of such composition functions are as simple as
vector addition and (point-wise) multiplication (e.g. Mitchell and Lapata, 2008) up to more powerful
tensor-based operations where, going back to our ‘blue sky’ example, the adjective ‘blue’ would be
represented as a matrix, which would be multiplied with the noun vector ‘sky’ to return a modified
version of the latter (e.g. Baroni and Zamparelli, 2010).

A more recent trend in word composition exploits deep learning, a class of machine learning
techniques that model language in a completely data-driven fashion, by defining a loss on a down-
stream task (such as sentiment analysis, language modelling or machine translation) and learning
the representations for larger chunks from a signal back-propagated from this loss. In terms of how
they compose representations, models using deep learning can be divided in roughly two categories.
In the first category, deep learning is exploited to learn only the actual composition functions, while
the order of composition is defined by the modeller. An example is the recursive neural network of
Socher et al. (2010), in which representations for larger chunks are computed recursively following
a predefined syntactic parse tree of the sentence. While the composition function in this approach
is fully learned from data using back-propagation through structure (Goller and Kuchler, 1996), the
tree structure that defines the order of application has to be provided to the model, allowing models
to be ‘compositional by design’. More recent variants lift this dependency on external parse trees
by jointly learning the composition function and the parse tree (Le and Zuidema, 2015; Kim et al.,
2019, i.a.), often at the cost of computational feasibility.

In the second type of deep learning models, no explicit notion of (linguistic) trees or arbitrary
depth hierarchy is entertained. Earlier models of this type deal with language processing sequentially
and use recurrent processing units such as LSTMs (Hochreiter and Schmidhuber, 1997) and GRUs
(Chung et al., 2014) at their core (Sutskever et al., 2014). An important contribution to their
effectiveness comes from attention mechanisms, which allow recurrent models to keep track of long-
distance dependencies more effectively (Bahdanau et al., 2015). More recently, these models went
all in on attention, abandoning sequential processing in favour of massively distributed sequence
processing all based on attention (Vaswani et al., 2017). While the architectural design of this class
of models is not motivated by knowledge about linguistics or human processing, they are — through
their ability to easily process very large amounts of data — more successful than the previously
mentioned (sub)symbolic models on a variety of natural language processing tasks.

Different types of models that compose smaller representations into larger ones can be compared
along many dimensions. Commonly, they are evaluated by the usefulness of their representations for
different types of tasks, but also scalability, how much data they need to develop their representations
(sample efficiency) and their computational feasibility play a role in their evaluation. It remains,
however, difficult to explicitly assess if the composition functions they implement are appropriate for
natural language and, importantly, to what extent they are in line with the vast amount of knowledge
and theories about semantic composition from formal semantics and (psycho)linguistics. While the
composition functions of symbolic models are easy to understand (because they are defined on a
mathematical level), it is not empirically established that their rigidity is appropriate for dealing
with the noisiness and complexity of natural language (e.g. Potts, 2019). Neural models, on the
other hand, seem very well up to handling noisy scenarios, but are often argued to be fundamentally
incapable of conducting the types of compositions required to process natural language (Pinker,
1984; Fodor and Pylyshyn, 1988; Marcus, 2003) or at least to not use those types of compositions
to solve their tasks (e.g., Lake and Baroni, 2018).

In this work, we consider the latter type of models and focus in particular on whether these
models are capable of learning compositional solutions, a question that recently, with the rise of the
success of such models, has attracted the attention of several researchers. While many empirical
studies can be found that explore the compositional capabilities of neural models, they have not
managed to convince the community of either side of the debate: Whether neural networks are able
to learn and behave compositionally is still an open question. One issue standing in the way of more

clarity on this matter is that different researchers have different interpretations of what exactly it
means to say that a model is or is not compositional, a point exemplified by the vast number of
different tests that exist for compositionality. Some studies focused on testing if models are able to
productively use symbolic rules (e.g. Lake and Baroni, 2018); Some instead consider models’ ability
to process hierarchical structures (Hupkes et al., 2018; Linzen et al., 2016); Yet others consider if
models can segment the input into reusable parts (Johnson et al., 2017). This variety of tests for
compositionality of neural networks existing in the literature is better understandable considering the
open nature of the principle of compositionality, by Partee (1995) phrased as “The meaning of a whole
is a function of the meanings of the parts and of the way they are syntactically combined”. While
there is ample support for the principle itself, there is less consensus about its exact interpretation
and practical implications. One important reason for this is that the principle is not theory-neutral:
It requires a theory of both syntax and meaning, as well as functions to determine the meaning of
composed parts. Without these components, the principle of compositionality is formally vacuous
(Janssen, 1983; Zadrozny, 1994), because also trivial and intuitively non-compositional solutions
that cast every expression as one part and assign it a meaning as a whole do not formally violate the
principle of compositionality. To empirically test models for compositionality it is thus necessary to
first establish what is to be considered compositional.

With this work, we aim to contribute to clarity on this point, by presenting a study in which
we collect different aspects of and intuitions about compositionality from linguistics and philosophy
and bundle them in an overarching evaluation paradigm that can be used to better understand the
composition functions learned by neural models trained end-to-end on a downstream task. The
contribution of our work, we believe, is three-fold. First, we provide a bridge between, on the
one hand, the vast amount of theory about compositionality that underpins symbolic models of
language and semantic composition and, on the other hand, the neural models of language that
have proven to be very effective in many natural language tasks that seem to require compositional
capacities. Importantly, we do not aim to provide a nmew definition of compositionality, but rather
we identify different components of compositionality within the literature and design tests that
allow to test for these components independently. We believe that the field will profit from such
a principled analysis of compositionality and that this analysis will provide clarity concerning the
different interpretations that may be entertained by different researchers. Practically, a division into
clearly understood components can help to identify and categorise the strengths and weaknesses
of different models. We provide concrete and usable tests, bundled in an versatile test suite that
can be applied to any model. Secondly, to demonstrate the usefulness of this test suite, we apply
our tests to three popular sequence-to-sequence models: a recurrent, a convolution based and a
transformer model. We provide an in depth analysis of the results, uncovering interesting strengths
and weaknesses of these three architectures. Lastly, we touch upon the complex question that
concerns the extent to which a model needs to be explicitly compositional to adequately model data
of which the underlying structure is, or seems, compositional. We believe that, in a time where
the most successful natural language processing methods require large amounts of data and are not
directly motivated by linguistic knowledge or structure, this question bears more relevance than
ever.

Outline

In what follows, we first briefly revise other literature with similar aims and sketch how our work
stands apart from previous attempts to assess the extent to which networks implement composition-
ality. We describe previously proposed data sets to evaluate compositionality as well as studies that
evaluate the representations of pre-trained models. In Section 3, we give a theoretical explanation
of the five notions for which we devise tests, which we motivate by providing interpretations of
these notions from the philosophy of language and theoretical linguistics literature. In Section 4, we
describe the data set that we use for our study, followed by a brief description of the three types

of models that we compare in our experiments. A full description of the experiments for our data
set, as well as details on model training and evaluation, can be found in Section 6. We report and
analyse the results of all our experiments in Section 7 and further reflect upon their implications in
Section 8.

2. Related Work

Whether artificial neural networks are fundamentally capable of representing compositionality, trees
and hierarchical structure has been a prevalent topic ever since the first connectionism models
for natural language were introduced. Recently, this topic has regained attention, and a substantial
number of empirical studies can be found that explore the compositional capacities of neural models,
with a specific focus on their capacity to represent hierarchy. These studies can be roughly divided
into two categories: studies that devise specific data sets that models can be trained and tested on
to assess if they behave compositionally, and studies that focus on assessing the representations that
are learned by models trained on some independent (often natural) data set.

2.1 Evaluating compositionality with artificial data

Specifically crafted, artificial data sets to evaluate compositionality are typically generated from an
underlying grammar. It is then assumed that models can only find the right solution to the test
set if they learned to interpret the training data in a compositional fashion. Below, we discuss a
selection of such data sets and briefly review their results.!

2.1.1 ARITHMETIC LANGUAGE AND MATHEMATICAL REASONING

One of the first (recent) data sets proposed as testbed to reveal how neural networks process hier-
archical structure is the arithmetic language, introduced by Veldhoen et al. (2016). Veldhoen et al.
test networks for algebraic compositionality by looking at their ability to process spelled out, nested
arithmetic expressions. In a follow up paper, to gain insight in the types of solution that networks
encode, the same authors introduce diagnostic classifiers, trained to fire for specific strategies used
to solve the problem. They show that simple recurrent networks do not perform well on the task,
but gated recurrent networks can generalise well to lengths and depths of arithmetic expressions
that were not in the training set, but that this performance quickly deteriorates when the length of
expressions grows (Hupkes et al., 2018). From this, they conclude that these models are — to some
extent — able to capture the underlying compositional structure of the data.

More recently, Saxton et al. (2019) released another data set in which maths was used to probe
the compositional generalisation skills of neural networks. Saxton et al. compare Transformers and
LSTM architectures trained on a data set of mathematical questions and find that the Transformer
models generalise better than the LSTM models. Specifically, Transformer outperforms the LSTM
on a set of extrapolation tests that require compositional skills such as generalising to questions
involving larger numbers, more numbers or more compositions. However, performance deteriorates
for questions that require the computation of intermediate values, which Saxton et al. (2019) reason
indicates that the model has not truly learned to treat the task in a compositional manner, but
instead applies shallow tricks.

1. Discussing in detail all different data sets that have been proposed to evaluate compositionality falls outside the
scope of this paper. We aimed to make a representative selection of data sets that involve sequential inputs,
explicitly mention compositionality. We do not include grounded data sets such as CLEVR (Johnson et al., 2017)
and SQOOP (Bahdanau et al., 2018), that take place in more than one modality.

2.1.2 SCAN

In 2018, Lake and Baroni proposed the SCAN data set, describing a simple navigation task that
requires an agent to execute commands expressed in a compositional language. The authors test
various sequence-to-sequence models on three different splits of the data: a random split, a split
testing for longer action sequences and split one that requires compositional application of words
learned in isolation. The models obtain almost perfect accuracy on the first split, while performing
very poorly on the last two, which the authors argue require a compositional understanding of the
task. They conclude that — after all these years — sequence-to-sequence recurrent networks are still
not systematic. In a follow up paper by Loula et al. (2018), the same authors criticise these findings
and propose a new set of splits which focuses on rearranging familiar words (i.e., “jump”, “right”
and “around”) to form novel meanings (“jump around right”). Although they collect considerably
more evidence for systematic generalisation within their amended setup, the authors confirm their
previous findings that the models do not learn compositionally. Very recently, SCAN was also used
to diagnose convolutional networks. Comparing to recurrent networks, Dessi and Baroni (2019) find
that convolutional networks exhibit improved compositional generalisation skills, but their errors
are unsystematic, indicating that the model did not fully master any of the systematic rules.

2.1.3 LOOKUP TABLES

Liska et al. (2018) introduce a minimal compositional test where neural networks need to apply
function compositions to correctly compute the meaning of sequences of lookup tables. The meanings
of atomic tables are exhaustively defined and presented to the model, so that applying them does
not require more than rote memorisation. The authors show that out of many models trained with
different initialisations only a very small fraction exhibits compositional behaviour, while the vast
majority does not.?

2.1.4 LOGICAL INFERENCE

Bowman et al. (2015) propose a data set which uses a slightly different setup: it assesses models’
compositional skills by testing their ability to infer logical entailment relations between pairs of
sentences in an artificial language. The grammar they use licenses short, simple sentences; the
relations between these sentences are inferred using a natural logic calculus that acts directly on
the generated expressions. Bowman et al. show that recursive neural networks, that recursively
apply the same composition function and are thus compositional by design, obtain high accuracies
on this task. Mul and Zuidema (2019) show that also gated recurrent models can perform well on an
adapted version of the same task, which uses a more complex grammar. With a series of additional
tests, Mul and Zuidema provide further proof for basic compositional generalisation skills of the
best-performing recurrent models. Tran et al. (2018) report similar findings, and furthermore show
that while a Transformer performs similar to an LSTM model when the entire data set is used, an
LSTM model generalises better when smaller training data is used.

2.2 Evaluating compositionality with natural data

While very few studies present methods to explicitly evaluate how compositional the representations
of models that are trained on independent data sets are, there is a number of studies that focus
on evaluating aspects of learned representations that are related to compositionality. In particular,
starting from the seminal work of Linzen et al. (2016), the evaluation of the syntactic capabilities of
neural language models has attracted a considerable amount of attention. While the explicit focus

2. Hupkes et al. (2019) show how adding an extra supervision signal to the network’s attention consistently results in
a complete solution of the task, but it is not clear how their results extend to other, more complicated scenarios.
Korrel et al. (2019) propose a novel architecture with analogous, complete solutions without the need for extra
supervision.

of such studies is on the syntactic capabilities of different models and not on providing tests for
compositionality, many of the results in fact concern the way that neural networks process the types
of hierarchical structures often assumed to underpin compositionality.

2.2.1 NUMBER AGREEMENT

Linzen et al. (2016) propose to test the syntactic abilities of LSTMs by testing to what extent they
are capable of correctly processing long-distance subject-verb agreement, a phenomenon they argue
to be commonly regarded as evidence for hierarchical structure in natural language. They devise a
number-agreement task and find that a pre-trained state-of-the-art LSTM model (Jozefowicz et al.,
2016) does not capture the structure-sensitive dependencies.

Later, these results were contested by a different research group, who repeated and extended the
study with a different language model and tested a number of different long-distance dependencies
for English, Italian, Hebrew and Russian (Gulordava et al., 2018). Their results do not match the
earlier findings of Linzen et al. (2016): Gulordava et al. (2018) find that an LSTM language model
can solve the subject-verb agreement problem well, even when the words in the sentence are replaced
by syntactically nonsensical words, which they take as evidence that the model is indeed relying on
syntactic and not semantic clues.®> Whether the very recent all-attention language models do also
capture syntax-sensitive dependencies is still an open question. Some (still unpublished) studies
find evidence that such models score high on the previously described number-agreement task of
(Goldberg, 2019; Lin et al., 2019). More mixed results are reported by others (Tran et al., 2018;
Wolf, 2019).

2.2.2 SYNTAX IN MACHINE TRANSLATION

Another subfield of natural language processing in which learned neural representations are heavily
studied is machine translation (MT). Analyses in this line of work typically consider which properties
are encoded by MT models, with a specific focus on the difference between the representations
within layers that situated at different levels of the hierarchy of a model. A robust finding from such
analyses is that features such as syntactic constituency, part-of-speech tags and dependency edges
can be reliably predicted from the hidden representations of both RNNs (Shi et al., 2016; Belinkov
et al., 2017; Blevins et al., 2018) and Transformer models (Raganato and Tiedemann, 2018; Tenney
et al., 2019b). Generally, lower level features are encoded in lower layers, while higher level syntactic
and semantic features are better represented in deeper layers (e.g. Blevins et al., 2018; Tenney et al.,
2019a). For Transformer models, a recent wave of papers demonstrates that such features can also
be extracted from the attention patterns (Vig and Belinkov, 2019; Marecek and Rosa, 2018; Lin
et al., 2019). While these results do not straightforwardly extend to the compositional scenario
that we are interested in in this work, they do demonstrate that both recurrent and attention-based
models trained in a setup similar to the one considered for this work are able to capture the types
of higher level syntactic features that are often considered to be key for compositional behaviour.

2.3 Intermediate conclusions

We reviewed various attempts to assess the extent to which neural models are able to implement
compositionality and hierarchy. This overview illustrated the difficulty and importance of evaluating
the behaviour of neural models but also showed that whether neural networks can or do learn
compositionally is still an open question. Both strands of approaches we considered — approaches

3. The task proposed by Linzen et al. (2016) served as inspiration for many studies investigating the linguistic or
syntactic capabilities for neural language models, and also the task itself was used in many follow-up studies.
Such studies, that we will not further discuss, are generally positive about the extent to which recurrent language
models represent syntax.

that use special compositional data sets to train and test models, and approaches that instead focus
on the evaluation of pre-trained models — report positive as well as negative results.

In the first approach, researchers try to encode a certain notion of compositionality in the task
itself. While it is important, when testing for compositionality, to make sure the specific task that
networks are trained on has a clear demand for compositional solutions, we believe these studies
fall short in explicitly linking the task they propose to clearly-defined notions of compositionality.
Further, we believe that the multifaceted notion of compositionality cannot be exhausted in one single
task. In the following section, we disconnect testing compositionality from the task at hand and
disentangle five different theoretically motivated ways in which a network can exhibit compositional
behaviour that are not a priori linked to a specific downstream task.

The second type of studies roots its tests into clear linguistic hypotheses. However, by testing
neural networks that are trained on uncontrolled data, they lose the direct connection between com-
positionality and the downstream task. Although compositionality is widely considered to play an
important role for natural language, it is unknown what type of compositional skills — if any — a
model needs to have to successfully model tasks involving natural language, such as for instance
language modelling. If it cannot be excluded that successful heuristics or syntax-insensitive approxi-
mations exists, a negative result can not be taken as evidence that a particular type of model cannot
capture compositionality, it merely indicates that this exact model instance did not capture it in
this exact case. While, in the long run, we also wish to reconnect the notion of compositionality
to natural data, we believe that before being able to do so, it is of primary importance to reach an
agreement about what defines compositionality and how it should be tested in neural networks.

3. Testing compositionality

In the previous section, we discussed various attempts to evaluate the compositional skills of neural
network models. We argued that progressing further on this question requires more clarity on
what defines compositionality for neural networks, which we address in this work by providing tests
that are more strongly grounded in the literature about compositionality. We now arrive at the
theoretical part of the core of our research, in which we set the theoretical ground for the five
tests we propose and conduct in this paper. We describe five aspects of compositionality that are
explicitly motivated by theoretical literature on this topic and propose, on a high level, how they can
be tested. In particular, we propose to test (i) if models systematically recombine known parts and
rules (systematicity) (ii) if models can extend their predictions beyond the length they have seen
in the training data (productivity) (iii) if models’ predictions are robust to synonym substitutions
(substitutivity) (iv) if models’ composition operations are local or global (localism) and (v) if models
favour rules or exceptions during training (overgeneralisation). Below, we describe the theory that
motivated us to select these aspects, that are schematically depicted in Figure 1. Later, in Section 6.2,
we provide details about how we operationalise them in concrete tests.*

3.1 Systematicity

The first property we propose to test for — following many of the works presented in the related work
section of this article — is systematicity, a notion frequently used in the context of compositionality.
The term was introduced by Fodor and Pylyshyn (1988) — notably, in a paper that argued against
connectionist architectures — who used it to denote that

[t]he ability to produce/understand some sentences is intrinsically connected to the ability
to produce/understand certain others” (Fodor and Pylyshyn, 1988, p. 25)

4. It is important to note that, while the notions and principles we consider are often used to argue about the
compositionality of languages, here, our focus lies on evaluating the compositionality of different types of artificial
learners. The compositionality of our data, which we will discuss in Section 4, we take as given.

LA Q0 +000 © 0000
29 .00 |)
= O000O0 O 0®0 O

tematicit b) Productivit
(a) Systematicity (b) Productivity (c) Substitutivity

OO0 -0
: OO0 -0
fffffffffff | °%i g0

(d) Localism (e) Overgeneralisation

e ———— — = =

Figure 1: Schematic depictions of the five tests for compositionality proposed in this paper. (a) To
test for systematicity, we evaluate models’ ability to recombine known parts to form new sequences.
(b) While the productivity test also requires recombining known parts, the focus there lies on
unboundedness: we test if models can understand sequences longer than the ones they were trained
on. (c) In the substitutivity test we evaluate how robust models are towards the introduction of
synonyms, and, more specifically, in which cases words are considered synonymous by different
models. (d) The localism test targets how local the composition operations of models are: Are
smaller constituents evaluated before larger constituents? (e) The overgeneralisation test evaluates
how likely models are to infer rules: is a model instantly able to accommodate exceptions, or does it
need more evidence to deviate from applying the general rule instantiated by the rest of the data?

This ability concerns the recombination of known parts and rules: anyone who understands a number
of complex expressions also understands other complex expressions that can be built up from the
constituents and syntactical rules employed in the familiar expressions. To use a classic example
from Szabé (2012): someone who understands ‘brown dog’ and ‘black cat’ also understands ‘brown
cat’.

Fodor and Pylyshyn (1988) contrast systematicity with storing all sentences in an atomic way,
in a dictionary-like mapping from sentences to meanings. Someone who entertains such a dictionary
would not be able to understand new sentences, even if they were similar to the ones occurring in
their dictionary. Since humans are evidently able to infer meanings for sentences they have never
heard before, they must use some systematic process to construct these meanings from the ones
they internalised before. By the same argument, however, any model that is able to generalise to
a sequence outside its training space (its test set), should have learned to construct outputs from
parts it perceived during training and some rule of recombination. Thus, rather than asking if a
model is systematic, a more interesting question is whether the rules and constituents the model
uses are in line with what we believe to be the actual rules and constituents underlying a particular
data set or language.

3.1.1 TESTING SYSTEMATICITY

With our systematicity test, we aim to pull out that specific aspect, by testing if a model can
recombine constituents that have not been seen together during training. In particular, we focus
on combinations of words ¢ and b that meet the requirements that (i) the model has only been

familiarised with a in contexts excluding b and vice versa but (ii) the combination a b is plausible
given the rest of the corpus.

3.2 Productivity

A notion closely related to systematicity is productivity, which concerns the open-ended nature of
natural language: Language appears to be infinite, but has to be stored with finite capacity. Hence,
there must be some productive way to generate new sentences from this finite storage.> While this
‘generative’ view of language became popular with Chomsky in the early sixties (Chomsky, 1956),
Chomsky himself traces it back to Von Humboldt, who stated that ‘language makes infinite use of
finite means’.

Both systematicity and productivity rely on the recombination of known constituents into larger
compounds. However, whereas systematicity can be — to some extent — empirically established,
productivity cannot, as it is not possible to prove that natural languages in fact contain an infinite
number of complex expressions. Even if humans’ memory allowed them to produce infinitely long
sentences, their finite life prevents them from doing so. Productivity of language is therefore more
controversial than systematicity.

3.2.1 TESTING PRODUCTIVITY

To separate systematicity from productivity, in our productivity test we specifically focus on the
aspect of unboundedness. We test whether different learners can understand sentences that are
longer than the ones encountered during training. To test this, we separate sequences in the data
based on length and evaluate models on their ability to cope with longer sequences after having been
familiarised with the shorter ones.

3.3 Substitutivity

A principle closely related to the principle of compositionality is the principle of substitutivity. This
principle, that finds its origin in philosophical logic, states that if an expression is altered by replacing
one of its constituents with another constituent with the same meaning (a synonym), this does not
affect the meaning of the expression (Pagin, 2003). In other words, if a substitution preserves the
meaning of the parts of a complex expression, it also preserves the meaning of the whole. In the
latter formulation, the correspondence with the principle of compositionality itself can be easily seen:
as substituting part of an expression with a synonym changes nor the structure of the expression
neither the meaning of its parts, it should not change the meaning of the expression itself either.

Like the principle of compositionality, the substitutivity principle in the context of natural lan-
guage is subject to interpretation and discussion. Husserl (1913) pointed out that the substitution
of expressions with the same meaning can result in nonsensical sentences if the expressions belong
to different semantic categories (the philosopher Geach (1965) illustrated this considering the two
expressions Plato was bald and baldness was an attribute of Plato, that are synonymous but cannot
be substituted in the sentence The philosopher whose most eminent pupil was Plato was bald). A
second context which poses a challenge for the substitutivity principle concerns embedded state-
ments about beliefs. As already sketched out in the previous section, if X and Y are synonymous,
this does not necessarily imply that the expressions Peter thinks that X and Peter thinks that Y
are both true. In this work, we do not consider these cases, but instead focus on the more general
question: is substitutivity a salient notion for neural networks and under what conditions can and
do they infer synonymity?

5. The term productivity also has a technical meaning in morphology, which we do not imply here.

3.3.1 TESTING SUBSTITUTIVITY

We test substitutivity by probing under which conditions a model considers two atomic units to be
synonymous. To this end, we artificially introduce synonyms and consider how the prediction of a
model changes when an atomic unit in an expression is replaced by its synonym. We consider two
different cases. Firstly, we analyse the case in which synonymous words occur equally often and in
comparable contexts. In this case, synonymity can be inferred from the corresponding meanings on
the output side, but is aided by distributional similarities on the input side. Secondly, we consider
pairs of words in which one of the words occurs only in very short sentences (we will call those
primitive contexts). In this case, synonymity can only be inferred from the (implicit) semantic
mapping, which is identical for both words, but not from the context that those words appear in.

3.4 Localism

In its basic form, the principle of compositionality states that the meaning of a complex expression
derives from the meanings of its constituents and how they are combined. It does not impose
any restrictions on what counts as an admissible way of combining different elements, which is
why the principle taken in isolation is formally vacuous.® As a consequence, the interpretation of
the principle of compositionality depends on the strength of the constraints that are put on the
semantic and syntactic theories involved. One important consideration concerns — on an abstract
level — how local the composition operations should be. When operations are very local (a case also
referred to as strong or first-level compositionality), the meaning of a complex expression depends
only on its local structure and the meanings of its immediate parts (Pagin and Westerstahl, 2010;
Jacobson, 2002). In other words, the meaning of a compound is only dependent on the meaning
of its immediate ‘children’, regardless of the way that their meaning was built up. In a global or
weak compositionality, the meaning of an expression follows from its total (global) structure and
the meanings of its atomic parts. In this interpretation, compounds can have different meanings,
depending on the larger expression that they are a part of.

Carnap (1947) presents an example that nicely illustrates the difference between these two in-
terpretations, in which he considers sentences with tautologies. Under the view that the meaning
of declarative sentences is determined by the set of all worlds in which this sentence is true, any
two tautologies X and Y are synonymous. Under the local interpretation of compositionality, this
entails that also the phrases ‘Peter thinks that X’ and ‘Peter thinks that Y’ should be synonymous,
which is not necessarily the case, as Peter may be aware of some tautologies but unaware of others.
The global interpretation of compositionality does not give rise to such a conflict, as X and Y, de-
spite being identical from a truth-conditional perspective, are not structurally identical. Under this
representation, the meanings of X and Y are locally identical, but not globally, if also the phrase
they are a part of is considered. For natural language, contextual effects, such as the disambiguation
of a phrase or word by a full utterance or even larger piece of discourse, makes the localist account
highly controversial. As a contrast, consider an arithmetic task, where the outcome of 14 - (2 +
3) does not change when the subsequence (2+3) is replaced by 5, a sequence with the same (local)
meaning, but a different structure.

3.4.1 TESTING LOCALISM

We test if a model’s composition operations are local or global by comparing the meanings it assigns
to stand-alone sequences to those it assigns to the same sequences when they are part of other
sequences. More specifically, we compare a model’s output when it is given a composed sequence
X, built up from two parts A and B with the output the same model gives when it is forced to first

6. We previously cited Janssen (1983), who proved this claim by showing that arbitrary sets of expressions can be
mapped to arbitrary sets of meanings without violating the principle of compositionality, as long as one is not
bound to a fixed syntax.

10

separately process A and B in a local fashion. If the model employs a local composition operation
that is true to the underlying compositional system that generated the language, there should be
no difference between these two outputs. A difference between these two outputs, instead, indicates
that the model does not compute meanings by first computing the meanings of all subparts, but
pursues a different, more global, strategy.

3.5 Overgeneralisation

The previously discussed compositionality arguments are of mixed nature. Some — such as pro-
ductivity and systematicity — are intrinsically linked to the way that humans acquire and process
language. Others — such as substitutivity and localism — are properties of the mapping from signals
to meanings in a particular language. While it can be tested if a language user abides by these
principles, these principles themselves do not relate directly to language users. To complete our set
of tests to assess whether a model learns compositionally, we include also a notion that exclusively
concerns the acquisition of the language by a model: we consider if models exhibit overgeneralisation
when faced with non-compositional phenomena.

Overgeneralisation (or overregularisation) is a language acquisition term, that refers to the sce-
nario in which a language learner applies a general rule in a case that forms an exception to this rule.
One of the most well-known examples, which served also as the subject of the famous past-tense de-
bate between symbolism and connectionism (Rumelhart and McClelland, 1986; Marcus et al., 1992),
concerns the rule that English past tense verbs can be formed by appending -ed to the stem of the
verb. During the acquisition of past tense forms, learners infrequently use this rule also for irregular
verbs, resulting in forms like goed (instead of went) or breaked (instead of broke).

The relation of overgeneralisation with compositionality comes from the supposed evidence that
overgeneralisation errors provide for the presence of symbolic rules in the human language system
(see, e.g. Penke, 2012). In this work, we follow this line of reasoning and take the application of a rule
in a case where this is contradicted by the data as evidence that the model in fact internalised this
rule. In particular, we regard a model’s inclination to apply rules as the expression of a compositional
bias. This inclination is most easily observed in the case of exceptions, where the correct strategy is
to ignore the rules and learn on a case-by-case basis. If a model overgeneralises by applying the rules
also to such cases, we hypothesise that this in particular demonstrates compositional awareness.

3.5.1 TESTING OVERGENERALISATION

We propose an experimental setup where a model’s tendency to overgeneralise is evaluated by mon-
itoring its behaviour on exceptions. We identify samples that do not adhere to the rules underlying
the data distribution— ezceptions — in the training data sets and assess the tendency to overgeneralise
by observing how architectures model these exceptions during training: (when) do they consistently
follow a global rule set, and (when) do they (over)fit the training samples individually?

4. Data

As observed by many others before us, insight in the compositional skills of neural networks is not
easily acquired by studying models trained on natural language directly. While it is generally agreed
upon that compositional skills are required to appropriately model natural language, successfully
modelling natural data requires far more than understanding compositional structures. As a conse-
quence, a negative result may stem not from a model’s incapability to model compositionality, but
rather from the lack of signal in the data that should induce compositional behaviour. A positive
result, on the other hand, cannot necessarily be explained as successful compositional learning, since
it is difficult to establish that a good performance cannot be reached through heuristics and memo-
risation. In this article, we therefore consider an artificial translation task, in which sequences that

11

Non-terminal rules

S — Fy S | Fp S, S

S - X

X - XX

Lexical rules

Fy — copy | reverse | shift | echo | swap | repeat
Fg — append | prepend | remove first | remove_second
X —A|B|...|Z|A2]...|]B2]...

Figure 2: The context free grammar that describes the entire space of grammatical input sequences in
PCFG SET. The rule probabilities (not depicted) can be used to control the distributional properties
of a PCFG SET. We will use this property to make sure that our data matches a corpus with natural
English sentences in terms of length and depth distributions.

are generated by a probabilistic context free grammar (PCFG) should be translated into output
sequences that represent their meanings. These output sequences are constructed by recursively
applying the string edit operations that are specified in the input sequence. The task, which we dub
PCFG SET, does not contain any non-compositional phenomena, and we can thus be certain that
compositionality is in fact a salient feature. At the same time, we construct the input data such
that in other dimensions — such as the lengths of the sentences and depths of the parse trees — it
matches the statistical properties of a corpus with sentences from natural language (English).

4.1 Input sequences: syntax

The input alphabet of PCFG SET contains three types of words: words for unary and binary func-
tions that represent string edit operations (e.g. append, copy, reverse), elements to form the string
sequences that these functions can be applied to (e.g. A, B, A1, B1), and a separator to separate
the arguments of a binary function (,). The input sequences that are formed with these task are
sequences describing how a series of such operations are to be applied to a string argument. For
instance:

repeat A B C
echo remove first D , E F
append swap F G H , repeat I J

We generate input sequences with a PCFG, shown in Figure 2 (for clarity, production probabilities
are omitted). As the grammar we use for generation is recursive, we can generate an infinite
number of admissible input sequences. Because the operations can be nested, the parse trees of
valid sequences can be arbitrarily deep and long. Additionally, the distributional properties of a
particular PCFG SET data set can be controlled by adjusting the probabilities of the grammar and
varying the number of input characters. We will use this to naturalise the data set such that its
distribution of lengths and depths correspond to the distribution observed in a data set containing
English sentences.

4.2 Output sequences: semantics

The meaning of a PCFG SET input sequence is constructed by recursively applying the string edit
operations specified in the sequence. This mapping is governed by the interpretation functions
listed in Figure 3. Following these interpretation functions, the three sequences listed above would

12

Unary functions Fy: Binary functions Fp:

COpy X1 *** Tn — T1 - Tp append X, y — XYy
reverse Ty --- Tp — Ty - T prepend X, y — ¥y X
shift z1 -+ x, — Xy - Ty T remove first X, y -y
swap 1 - Tn — Ty T -+ Tp_1 X1 remove_second X,y «— X
repeat x1:: Tn — T1 Ty T v T

echo xy--- xp — X1 - Ty T

Figure 3: The interpretation functions describing how the meaning of PCFG SET input sequences
is formed.

be mapped to output sequences as follows:

repeat A B C —+ ABCABC
echo remove first D , E F — EFF
append swap F GH , repeat I J — HGFIJIJ

The definitions of the interpretation functions specify the systematic procedure by which an
output sequence should be formed from an input sequence, without having to enumerate particular
input-output pairs. In this sense, PCFG SET differs from a task such as the lookup table task
introduced by Liska et al. (2018), where functions must be exhaustively defined because there is no
systematic connection between arguments and the values to which functions map them.

4.3 Data construction

As argued earlier in this paper, the fact that a data set is generated by a compositional system
does not necessarily imply that successfully generalising to a particular test set requires knowing
this underlying system. Often, a learner may get away with concatenating memorised strings or
following another strategy that is unrelated to the compositional rules of the system. With PCFG
SET, we aim to create a task for which it should not be possible to obtain a high test accuracy
by following alternative strategies. In particular, we assure that the train and test data are linked
only by implicit systematic rules, by never repeating the same arguments to an input function. As
a consequence, models should not profit from memorising specific input-output pairs or be able to
apply mix-and-match strategies. Furthermore, since the accuracy on PCFG SET is directly linked
to a model’s ability to infer and execute compositional rules, the training signal a model receives
during training should convey that a compositional solution should be found. Thereby, we aim to
give models the best possible chance to learn a compositional solution.

5. Architectures

As a use-case for our compositionality test-suite, we compare three currently popular neural ar-
chitectures for sequence-to-sequence language processing tasks such as machine translation, speech
processing and language understanding: recurrent neural networks (Sutskever et al., 2014), convolu-
tional neural networks (Gehring et al., 2017b) and Transformer networks (Vaswani et al., 2017). In
this section we explain their most important features and include a brief overview of their potential
strengths and weaknesses in relation to compositionality.

5.1 LSTMS2S

The first architecture we consider is a recurrent encoder-decoder model with attention. This setup
is considered to be the most basic of the three setups we consider, but is still the basis of many

13

1
. T
T Attention
1 Attention

1

[I I |

RNN| o |RNNT < [RNN| < | RNN oy Goiry ‘Attention ‘ ‘ Attention H Attention ‘
T T T
T T T T T T T T [T T |
wy wo w3 Wy wy wa w3 Wy w1 W3 w3 Wy
(a) LSTMS2S (b) ConvS2S (c) Transformer

Figure 4: High-level graphical depictions of the most important features of the encoding mecha-
nisms in LSTMS2S, ConvS2S and Transformer models. (a) LSTMS2S processes the input in a fully
sequential way, iterating over the embedded elements one by one in both directions before applying
an attention layer. (b) ConvS2S divides the input sequence into local fragments of consecutive items
that are processed by the same convolutions, before applying attention. (c) Transformer immediately
applies several global attention layers to the input, without incrementally constructing preliminary
representations.

MT applications (e.g. OpenNMT, Klein et al., 2017) and has also been successful in the fields of
speech recognition (e.g. Chorowski et al., 2015) and question answering (e.g. He and Golub, 2016).
We consider the version of this model in which both the decoder and encoder are LSTMs and refer
to this setup with the abbreviation LSTMS2S.

LSTMS2S is a fully recurrent, bidirectional model. The encoder processes an input by iterating
over all of its elements in both directions and incrementally constructing a representation for the
entire sequence. Upon receiving the encoder output, the decoder performs a similar, sequential
computation to unroll the predicted sequence. Here, LSTMS2S uses an attention mechanism, which
allows it to focus on the parts of the encoded input that are estimated to be most important at each
moment in the decoding process.

The sequential fashion with which LSTMS2S model processes each input potentially limits the
model’s abilities to recombine components hierarchically. While depth — and, as shown by Blevins
et al. (2018), thus hierarchy — can be created by stacking neural layers, the number of layers in
popular recurrent sequence-to-sequence setups tends to be limited. The attention mechanism of the
encoder-decoder setup positively influences the skills of LSTMS2S to hierarchically process inputs,
as it allows the decoder to focus on input tokens out of the sequential order.

5.2 ConvS2S

The second architecture we consider is a convolutional sequence-to-sequence model. Convolutional
sequence-to-sequence models have obtained competitive results in machine translation (Gehring
et al., 2017a) and abstractive summarisation (Denil et al., 2014). In this paper, we follow the setup
described by Gehring et al. (2017b) and use their nomenclature: we refer to this model with the
abbreviation ConvS25S.

ConvS2S uses a convolutional model to encode input sequences, instead of a recurrent one. The
decoder uses a multi-step attention mechanism — every layer has a separate attention mechanism
— to generate outputs from the encoded input representations. Although the convolutions already
contextualise information in a sequential order, the source and target embeddings are also combined
with position embeddings that explicitly encode order. As at the core of the ConvS2S model lies the

14

local mechanism of one dimensional convolutions, which are repeatedly and hierarchically applied,
ConvS2S has a built in bias for creating compositional representations. Its topology is also biased
towards the integration of local information, which may hinder modelling long-distance relations.
However, convolutional networks have found to maintain a much longer effective history than their
recurrent counterparts (Bai et al., 2018). Within ConvS2S, such distance portions in the input
sequence may be combined primarily through the multi-step attention, which has been shown to
improve the generalisation abilities of the model compared to single-step attention (Dessi and Baroni,
2019).

5.3 Transformer

The last model we consider is the recently introduced Transformer model (Vaswani et al., 2017).
Transformer models constitute the current state-of-the-art in machine translation and are becoming
increasingly popular also in other domains, such as language modelling (e.g. Radford et al., 2019).
We refer to this setup with simply the name Transformer.

Transformers use neither RNNs nor convolutions to convert an input sequence to an output
sequence. Instead, they are fully based on a multitude of attention mechanisms. Both the encoder
and decoder of a transformer are composed of a number of feed-forward layers, each containing two
sub-layers: a multi-head attention module and a traditional feed-forward layer. In the multi-head
attention layers, several attention tensors (the ‘heads’) are computed in parallel, concatenated and
projected. In addition to a self-attention layer, the decoder has another layer, which computes
multi-head attention over the outputs of the encoder.

Since Transformers do not have any inherent notion of sequentiality, the input embeddings are
combined with position embeddings, from which the model can infer order. For Transformer models,
the cost of relating symbols that are far apart is thus not higher than relating words that are close
together, which — in principle — should ease modelling long distance dependencies. The setup of
attention-based stacked layers furthermore makes the architecture suitable for modelling hierarchical
structure in the input sequence, that needs not necessarily correspond to the sequential order. On the
other hand, the non-sequential nature of the Transformer could be a handicap as well, particularly
for relating consecutive portions in the input sequence. Transformers’ receptive field is inherently
global, which can be challenging in such cases.

6. Experiments

In the previous sections, we abstractly proposed tests for compositionality, discussed the data for
which we will actualise these tests and introduced the models we will put under scrutiny. We now
describe in detail our experimental setup. First, we explain how we sample sentences from all
potential expressions in PCFG SET (Section 6.1). We then detail our five tests in relation to this
data set (Section 6.2). Lastly, we explain the training procedure for the three different architectures
and discuss how we evaluate the results of the experiments (Section 6.3 and 6.4, respectively). Our
data, code and trained models are available online at https://github.com/i-machine-think/
am-i-compositional.

6.1 Data

PCFG SET describes a general framework for producing many different data sets. We describe here
the procedure by means of which we selected PCFG SET input-output pairs for our experiments.
6.1.1 NATURALISATION OF STRUCTURAL PROPERTIES

The probabilistic nature of the PCFG SET input grammar offers a high level of control over the
generated input sequences. We use this control to enforce an input distribution that resembles

15

https://github.com/i-machine-think/am-i-compositional
https://github.com/i-machine-think/am-i-compositional

" 0 N

30 30

length
N
o
length
N
o

10 10 ,

0 5 10 15 0 5 10 15
depth depth

(a) WMT17 (b) PCFG SET data

Figure 5: Distribution of lengths and depths in (a) the PCFG SET data and (b) English WMT 2017
test data.

the statistics of a more natural data set in two relevant respects: the length of the expressions,
and the depth of their parse trees. To obtain these statistics, we use the English side of a large
machine translation corpus: WMT 2017 (Bojar et al., 2017). We parse this corpus with a statistical
parser (Manning et al., 2014) and extract the distribution of length and depths from the annotated
corpus. We then use expectation maximisation to tune the PCFG parameters in such a way that
the resulting bivariate distribution of the generated data mimics the one extracted from the WMT
data. In Figure 5a and Figure 5b, respectively, we plot the distributions of the WMT data and a
sample of around ten thousand sentences of the resulting PCFG SET data. For a more detailed
description of the naturalisation procedure we refer to Appendix A.

6.1.2 SENTENCE SELECTION

We set the size of the string alphabet to 520 and create a base corpus of 100 thousand distinct input-
output pairs. We use 85% of this corpus for training, 5% for validation and 10% for testing. During
data generation, further care is taken to make memorisation as unattractive as possible by controlling
the string sequences that feature as primitive arguments in the input expressions: We make sure that
the same string arguments are never repeated. While we do not control re-occurrence of specific
subsequences in general, the relatively large string alphabet makes it improbable that particular
sub-sequences occur often enough to make memorisation a profitable learning strategy.

6.2 Actualisations of compositionality tests

In the following paragraphs, we detail how we concretise the five tests proposed in Section 3 for
PCFG SET.

16

Depth Length #Functions
min maer avg MIn mar avg Mmin Mar avg

Productivity
Train 1 8 3.9 3 53 16.3 1 8 4.4
Test 4 17 82 14 71 330 9 35 115
PCFG SET
Train 1 17 4.4 3 71 18.4 1 35 5.2
Test 1 17 44 3 71 18.2 1 28 5.1

Table 1: The average, minimum and maximum length, depth and number of functions for the train
and test set of the productivity test. We provide the same measures for the PCFG SET test data
set for comparison.

6.2.1 SYSTEMATICITY

The task accuracy for PCFG SET already reflects whether models are able to recombine functions
and input strings that were not seen together during training. In the systematicity test, we focus
explicitly on models’ ability to interpret pairs of functions that were never seen together while
training. In particular, we evaluate four pairs of functions: swap repeat, append remove_second,
repeat remove_second and append swap.” We redistribute the training and test data such that
the training data does not contain any input sequences including these specific four pairs, and all
sequences in the test data contain at least one. After this redistribution, the training set contains 82
thousand input-output pairs, while the test set contains 10 thousand examples. Note that while the
training data does not contain any of the function pairs listed above, it still may contain sequences
that contain both functions. E.g. reverse repeat remove_second A B , C D cannot appear in
the training set, but repeat reverse remove_second A B , C D might.

Evaluation We evaluate models based on their accuracy on the test data.

6.2.2 PRODUCTIVITY

To test the productive capacity of models, we focus on how well they generalise to sequences that
are longer than the ones they have seen during training. In particular, we redistribute the PCFG
SET training and testing data based on the number of functions. Sequences containing up to eight
functions are collected in the training set, consisting of 81 thousand sequences, while input sequences
containing at least nine functions are used for evaluation and collected in a test set containing ten
thousand sequences. The average, minimum and maximum length, depth and number of functions
for the train and test set of the productivity test are shown in Table 1.

Evaluation We evaluate models based on their accuracy on the test set.

6.2.3 SUBSTITUTIVITY

To evaluate how robust models are to substitutions of words with identical meanings, we ran-
domly select two binary and two unary functions (swap, repeat, append and remove_second), for
which we artificially introduce synonyms during training: swap_syn, repeat_syn, append_syn and
remove_second_syn. Like in the systematicity test, we keep those four functions fixed across all
experiments, varying only the model initialisation and order of presentation of the training data.

7. To decrease the number of dimensions of variation, we keep the specific pairs of functions fixed during evaluation:
Rather than varying the function pairs evaluated across runs, we vary the initialisation and order of presentation
of the training examples.

17

The introduced synonyms have the same interpretation functions as the terms they substitute, so
they are semantically equivalent to their counterparts. We consider two different conditions, that
differ in the syntactic distribution of the synonyms in the training data.

Equally distributed synonyms For the first substitutivity test we randomly replace half of
the occurrences of the chosen functions F' with Fj,,, keeping the target constant. Originally, the
individual functions appeared in 39% of the training samples. After synonym substitution they
appear in approximately 19% of the training samples. In this test, F' and Fy,,, are distributionally
similar, which should facilitate inferring that they are synonyms.

Primitive synonyms In the second and more difficult substitutivity test, we introduce Fj,,, only
in primitive contexts, where F' is the only function call in the input sequence. F,, is introduced in
0.1% of the training set samples, resulting in one appearance of Fi,,, for approximately four hundred
occurrences of F'. In this primitive condition, the function F' and its synonymous counterpart Fyy,
are distributionally not equivalent

Evaluation In both cases, we evaluate models based on the interchangeability of F' with Fjy,
rather than measuring whether the output sequences match the target. This evaluation procedure
based on consistency rather than accuracy is explained in more detail in Section 6.4.

6.2.4 LOCALISM

In the localism test, we test models’ behaviour when a sub-sequence in an input sequence is replaced
with its meaning. Thanks to the recursive nature of the PCFG SET expressions and interpretation
functions, this is a relatively straightforward substitution in our data. If a model uses local com-
position operations to build up the meanings of input sequences, following the hierarchy that it is
dictated by the underlying system, its output meaning should not change as a consequence of such
a substitution.

Unrolling computations We compare the output sequence that is generated by a model for a
particular input sequence with the output sequence that the same model generates when we explicitly
unroll the processing of the input sequence. That is, instead of presenting the entire input sequence
to the model at once, we force the model to evaluate the outcome of smaller constituents before
computing the outcome of bigger ones, in the following way: we iterate through the syntactic tree
of the input sequence and use the model to compute the meanings of the smallest constituents.
We then replace these constituents by the model’s output and use the model to again compute the
meanings of the smallest constituents in this new tree. This process is continued until the meaning
for the entire sequence is found. A concrete example is visualised in Figure 6.

To separate a model’s ability to generalise to test data from the procedure it follows to compute
the meanings of sentences, we conduct the localism test on sentences that were drawn from the
training data. We randomly select five thousand sequences from the training set. On average,
unrolling the computation of these sequences involves five steps.

Evaluation We evaluate a model by comparing the final output of the enforced recursive method to
the output emitted when the sequence is presented in its original form. Crucially, during evaluation
we focus on checking whether the two outputs are identical, rather than if they are correct. If a model
wrongfully emits B A for input sequence prepend B , A, this is not penalised in this experiment,
provided that the regular input sequence yields the same prediction as its hierarchical variant. This
method of evaluation matches the previously mentioned consistency score that is also used in the
substitutivity tests.

18

echo append C

echo append C prepend B A

Figure 6: An example of the unrolled computation of the meaning of the sequence echo append C
, prepend B , A for the localism test. We unroll the computation of the meaning of the sequence
by first asking the model to compute the meaning o; of the smallest constituent prepend B , A
and then replace the constituent by this predicted meaning o;. In the next step, we use the model
to compute the meaning of the then smallest constituent echo o7, and replace the constituent in
the sequence with the model’s prediction for this constituent. This process is repeated until the
meaning of the entire sequence is computed, in steps, by the model. This final prediction (C A B B
in the picture) is then compared with the model’s prediction on the entire sequence (not shown in
the picture). If a model follows a local compositional protocol to predict the meaning of an output
sequence, these two outputs should be the same.

6.2.5 OVERGENERALISATION

In the overgeneralisation experiment, we implicitly target a model’s ability and willingness to infer
rules, by evaluating if it overgeneralises when faced with exceptions. As the language defined through
the PCFG is designed to be strictly compositional, it does not contain exceptions. We therefore
manually add them to the data set, which allows us to have a large control over their occurrence
and frequency.

Exceptions We select four pairs of functions that are assigned a new meaning when they appear
together in an input sequence: reverse echo, prepend remove first, echo remove first and
prepend reverse. Whenever these functions occur together in the training data, we remap the
meaning of those functions, as if an alternative set of interpretation functions is used in these few
cases. As a consequence, the model has no evidence for the compositional interpretation of these
function pairs, unless it overgeneralises by applying the rule observed in the rest of the training data.
For example, the meaning of echo remove first A , B C would normally be B C C, but has now
become A B C. The remapped definitions, which we call exceptions, can be found in Table 2.

Input Remapped to Target
Original Exception

reverse echo A B C echo copy A B C CCBA ABCC
prepend remove_first A , B , C remove_second append A , B, C CB AB
echo remove_first A , B C copy append A , B C BCC ABC
prepend reverse A B , C remove_second echo A B , C CBA A BB

Table 2: Examples for the overgeneralisation test. The input sequences in the data set (first column,
Input) are usually presented with their ordinary targets (Original). In the overgeneralisation test,
these input sequences are interpreted according to an alternative rule set (Remapped to), effectively
changing the corresponding targets (Exception).

19

Exception frequency In our main experiment, the number of exceptions in the data set is 0.1%
of the number of occurrences of the least occurring function of the function pair Fy F,. We present
also the results of a grid-search in which we consider exception percentages of 0.01%, 0.05%, 0.1%
and 0.5%.

Evaluation We monitor the accuracy of both the original and the exception targets during training
and compare how often a model correctly memorises the exception target and how often it overgen-
eralises to the compositional meaning, despite the evidence in the data. To summarise a model’s
tendency to overgeneralise, we take the highest overgeneralisation accuracy that is encountered dur-
ing training. For more qualitative analysis, we visualise the development of both memorisation and
overgeneralisation during training, resulting in overgeneralisation profiles.

6.3 Training

For every experiment, we perform three runs per model and report both the average and standard
deviation of their scores.® To decide on the hyper-parameters of the three different architectures, we
consider the setups that have proved most successful in the past. The details can be found below.

6.3.1 LSTMS2S

We use the LSTMS2S implementation of the OpenNMT-py framework (Klein et al., 2017). We set
the hidden layer size to 512, number of layers to 2 and the word embedding dimensionality to 512,
matching their best setup for translation from English to German with the WMT 2017 corpus, which
we used to shape the distribution of the PCFG SET data. We train all models for 25 epochs, or
until convergence, and select the best-performing model based on the performance on the validation
set. We use mini-batches of 64 sequences and stochastic gradient descent with an initial learning
rate of 0.1.

6.3.2 CoNvS2S

We use the ConvS2S setup that was presented by Gehring et al. (2017b). Word vectors are 512-
dimensional. Both the encoder and decoder have 15 layers, with 512 hidden units in the first 10
layers, followed by 768 units in two layers, all using kernel width 3. The final three layers are
2048-dimensional. We train the network with the Fairseq Python toolkit?, using the predefined
fconv_wmt_en_de architecture. Unless mentioned otherwise, we use the default hyperparameters
of this library. We replicate the training procedure of Gehring et al. (2017b), using Nesterov’s
accelerated gradient method and an initial learning rate of 0.25. We use mini-batches of 64 sentences,
with a maximum number of tokens of 3000. The gradients are normalised by the number of non-
padded tokens in a batch. We train all models for 25 epochs, or until convergence, as inferred from
the loss on the validation set.

6.3.3 TRANSFORMER

We use a Transformer model with an encoder and decoder that both contain 6 stacked layers. The
multi-head self-attention module has 8 heads, and the feed-forward network has a hidden size of
2048. All embedding layers and sub-layers in the network produce outputs of dimensionality 512.
In addition to word embeddings, positional embeddings are used to indicate word order. We use
OpenNMT-py!? (Klein et al., 2017) to train the model according to the guidelines provided by the

8. Some experiments, such as the localism experiment, do not require to train new models, but can be conducted
directly on models trained for other tests.

9. Fairseq toolkit: https://github.com/pytorch/fairseq

10. Pytorch port of OpenNMT: https://github.com/0OpenNMT/0OpenNMT-py.

20

https://github.com/pytorch/fairseq
https://github.com/OpenNMT/OpenNMT-py

framework!!: with the Adam optimiser (#; = 0.9 and 32 = 0.98) and a learning rate increasing for
the first 8000 ‘warm-up steps’ and decreasing afterwards. We train all models for 25 epochs, or until
convergence, and select the best-performing model based on the performance on the validation set.

6.4 Evaluation

Throughout our experiments, we consider two performance measures: accuracy and consistency.

6.4.1 ACCURACY

To compute accuracy scores, we consider the correctness of the output sequences the model generates.
More specifically, we consider their sequence accuracy, where only instances for which the entire
output sequence equals the target are considered correct. The accuracy measure is used to evaluate
the overall task performance, as well as the systematicity, productivity and overgeneralisation tests.
In the rest of this paper, we denote accuracy scores with *.

6.4.2 CONSISTENCY

In some of our tests, we assess models’ robustness to meaning-invariant changes in the input se-
quences, or their computation methods. To evaluate these tests, the most important point is not
whether a model correctly predicts the target for a transformed input, but whether its prediction
matches the prediction it made before the transformation. We measure this using a consistency
score, which expresses a pairwise equality, where a model outputs on two different inputs are com-
pared to each other, instead of to the target output. Also here, only instances for which there is a
complete match between the compared outputs are considered correct.

The consistency metric allows us to evaluate compositionality aspects, isolated from task perfor-
mance. Even for models that may not have a near-perfect task performance and therefore have not
mastered the rules underlying the data, we want to evaluate whether they consistently apply and
generalise the knowledge they did acquire. We use the consistency score for the substitutivity and
localism tests. In the next sections, consistency scores are marked with f.

7. Results

In Table 3, we summarise the results of all experiments described in the previous section. Below,
we give a detailed account of these results, going test by test.

7.1 Task accuracy

The average task performance on the PCFG SET data for the three different architectures is shown
on the first row of Table 3. In terms of task accuracy, the Transformer outperforms both LSTMS2S
and ConvS2S (p ~ 1076 and p ~ 1073, respectively), with a surprisingly high accuracy of 0.92.
ConvS2S, in turn, is with its 0.85 accuracy significantly better than LSTMS2S (p ~ 10~3), which
has an accuracy 0.79. The scores of the three architectures are robust with respect to initialisation
and order of presentation of the data, as evidenced by the low variation across runs. We now present
a breakdown of this task accuracy on different types of subsets of the data.

7.1.1 CORRELATION WITH LENGTH AND DEPTH

We explore how the accuracy of the three different architectures develops with increasing difficulty
of the input sequences, as measured in the input sequence’s depth (the maximum level of nestedness
observed in a sequence), the input sequence’s length (number of tokens) and the number of functions

11. Visit http://opennmt .net/0OpenNMT-py/FAQ.html for the guidelines.

21

http://opennmt.net/OpenNMT-py/FAQ.html

Experiment LSTMS2S ConvS2S Transformer

Task accuracy 0.79 £0.01 0.85 +0.01 0.92 + 0.01
Systematicity™ 0.51 £0.03 0.53 £0.01 0.68 + 0.01
Productivity* 0.29 £0.01 0.30 + 0.01 0.56 + 0.02
Substitutivity, equally distributed”™ 0.74 £ 0.00 0.96 + 0.01 0.98 + 0.00
Substitutivity, primitive 0.62 £0.01 0.61 £003 0.88 +0.04
Localism’ 0.45 £0.00 057 +£0.04 0.56 +0.03
Overgeneralisation* 0.73 £ 018 0.78 £0.12 0.84 + 0.02

Table 3: General task performance and performance per tests for PCFG SET. The results are
averaged over three runs and the standard deviation is indicated. Two performance measures are
used: sequence accuracy, indicated by *, and consistency score, indicated by f.

1.0 -
LSTMS2S
0.8 -+ Convs2s
> Q

O . = Transformer

© 0.6

>
S04
©

0.2

.0
1234567 891011121314 5 10 1520253035404550 1234567 8 9101112131415
depth length number of functions

Figure 7: Sequence accuracy of the three models as a function of several properties of the input
sequences for the general PCFG SET test set: depth of input’s parse tree, the input sequence’s
length and the number of functions input sequence. The results are averaged over three model runs
and computed over ten thousand test samples.

in the input sequence. In Figure 7, we plot the average accuracy for all three architectures as
a function of depth, length and number of functions in the input. Unsurprisingly, the accuracy
of all architecture types decreases with the length, depth and number of functions in the input.
All architectures have learned to successfully model sequences with low depths and lengths and a
small number of functions (reflected by accuracies close to 1). Their performance drops for longer
sequences with more functions. Overall the Transformer > ConvS2S > LSTMS2S trend is preserved
across the different data subsets.

7.1.2 FUNCTION DIFFICULTY

Since the input sequences typically contain multiple functions, it is not possible to directly evaluate
whether some functions are more difficult for models than others. On sequences that contain only
one function, all models achieve a maximum accuracy. To compare the difficulty of the functions,
we create one corpus with composed input sequences and derive for each function a separate corpus
in which this function is applied to those composed input sequences. We then express the com-
parative difficulty of a function for a model as this model’s accuracy on the corpus corresponding
to this function. For example, to compare the functions echo and reverse, we create two mini-
mally different corpora that only differ with respect to the first input function in the sequence (e.g.

22

remove_second I
remove_first I
copy I
append I
echo -
prepend EE——=—
shift B

1
1
|
L il |

swap -
reverse _p
repeat B
0.6 0.7 0.8 0.9 1.0 06 07 08 09 10 0.6 0.7 0.8 0.9 1.0
accuracy accuracy accuracy
(a) LSTMS2S (b) ConvS2S (c) Transformer

Figure 8: Accuracy of the three models per PCFG SET function, as computed by applying the
different functions to the same complex input sequences.

echo append swap F G H , repeat I J and reverse append swap F G H , repeat I J), and
compute the model’s accuracy on both corpora.'? We plot the results in Figure 8.

The ranking of functions in terms of difficulty is similar for all models, suggesting that the
difficulties are to a large extent stemming from the objective complexity of the functions themselves,
rather than from specific biases in the models. In some cases, it is very clear why. The function
echo requires copying the input sequence and repeating its last element — regardless of the bias
of the model this should be at least as difficult as copy which requires just to copy the input.
Similarly, prepend and append require repeating two string arguments, whereas for remove first
and remove_second only one argument needs to be repeated. The latter functions should thus be
easier, irrespective of the architecture. The relative difficulty of repeat reflects that generating
longer output sequences proves challenging for all architectures. As this function requires repeating
the input sequence twice, its output is on average twice as long as the output of another unary
function applied to an input string of the same length.

An interesting difference between architectures occurs for the function reverse. For both
LSTMS2S and ConvS2S this is a difficult function (although repeat is even harder than reverse
for LSTMS2S). For the Transformer, the accuracy for reverse is on par with the accuracies of echo,
swap and shift, functions that are substantially easier than reverse for the other two architec-
tures. This difference follows directly from architectural differences: while LSTMS2S and ConvS2S
are forced to encode ordered local context — as they are recurrent or apply local convolutions — the
Transformer is not bound to such an ordering and can thus more easily deal with inverted sequences.

7.2 Systematicity

In the systematicity test, we focus on models’ ability to systematically generalise, by testing their
ability to interpret pairs of functions that were not seen together during training. Following the
task accuracy, also for the systematicity test the Transformer model obtains higher scores than both
LSTMS2S and ConvS2S (p ~ 102 and p ~ 1075, respectively). The difference between the latter
two, however, is for this test statistically insignificant (p ~ 107!). The relative differences between
the Transformer model and the other two models gets larger. In Table 4, we show the average
accuracies of the three architectures on all four held-out function pairs.

12. Note that the since inputs to unary and binary functions are different, we have to use two different corpora to
compare binary and unary function difficulty. The unary and binary function scores in Figure 8 are thus not
directly comparable.

23

Composition LSTMS2S ConvS2S Transformer

swap repeat 0.40 £ 0.04 0.48 £ 0.02 0.53 £ 0.00
append remove_second 0.54 +£0.04 0.44 + 0.03 0.80 £ 0.02
repeat remove_second (.66 £0.02 0.64 £ 0.03 0.80 £ 0.01
append swap 0.47 £ 0.02 0.53 +0.03 0.73 £ 0.01

All 0.53 £ 0.03 0.55 £+ 0.01 0.72 £ 0.00

Table 4: The average sequence accuracy per pair of held-out compositions for the systematicity test.

7.2.1 SYSTEMATICITY VS TASK ACCURACY

The large difference between task accuracy and systematicity is to some extent surprising, since
PCFG SET is constructed such that a high task accuracy requires systematic recombination. As
such, these results serve as a reminder that models may find unexpected solutions, even for very
carefully constructed data sets. A potential explanation for this particular discrepancy is that,
due to the slightly different distribution of the systematicity data set, the models learn a different
solution than before. Since the functions occurring in the held-out pairs are slightly under-sampled,
it could be that the models’ representations of these functions are not as good as the ones they
develop when trained on the regular data set. A second explanation, to which our localism test will
lend more support, is that models do treat the inputs and functions systematically, but analyse the
sequences in terms of different units. Obtaining a high accuracy for PCFG SET undoubtedly requires
being able to systematically recombine functions and input strings, but it does not necessarily require
developing separate representations that capture the semantics of the different functions individually.
For instance, if there is enough evidence for repeat copy, a model may learn to directly apply the
combination of these two functions to an input string, rather than consecutively appealing to separate
representations for the two functions. Thus, to compute the output of a sequence like repeat copy
swap echo X, the model may apply two times a pair of functions, instead of four separate functions.
Such a strategy would not necessarily harm performance in the overall data set, since plenty of
evidence for all function pairs is present, but it would affect performance on the systematicity test,
where this is not the case. While larger chunking to ease processing is not necessarily a bad strategy,
we argue that it is desirable if models can also maintain a separate representation of the units that
make up such chunks, that may be needed in other contexts.

7.3 Productivity

In Figure 7, we saw that longer sequences are more difficult for all models, even if their length
and depth fall within the range of lengths and depths observed in the training examples. There
are several potential causes for this drop in accuracy. It could be that longer sequences are simply
more difficult than shorter ones: They contain more functions, and there is thus more opportunity
to make an error. Additionally, simply because they contain more functions, longer sequences are
more likely to contain at least one of the more difficult functions (see Figure 8). Lastly, due to the
naturalisation of the distribution of lengths, longer sequences are underrepresented in the training
data. There is thus fewer evidence for long sequences than there is for shorter ones. As such, models
may have to perform a different kind of generalisation to infer the meaning of longer sequences than
they do for shorter ones. Their decrease in performance when sequences grow longer could thus also
have been explained by a general poor ability to generalise to lengths outside their training space,
a type of generalisation sometimes referred to with the term extrapolation.

With our productivity test, we focus purely on this extrapolation aspect, by studying models’
ability to successfully generalise to longer sequences, which we will call the model’s productive power.

24

1.0 \ LSTMS2S W\/\,\/_/\ ++=+ Productivity
0.8 t <:=s CoOnvS2S RIS V) Task Success
o) \ —— Transformer " \/—\/\ \\
=] . N !

0.0
4 5 6 7 8 91011121314 15 20 25 30 35 40 45 50 9 10 11 12 13 14 15
depth length number of functions

Figure 9: Accuracy of the three models on the productivity test set as a function of several properties
of the input sequences: depth of the input’s parse tree, the input sequence’s length and the number of
functions present. The results are averaged over three model runs and computed over ten thousand
test samples.

To do so, we redistribute the training and testing data so that there is no evidence at all for longer
sequences in the training set.'®> The overall accuracy scores on the productivity test in Table 3
demonstrate that all models have great difficulty with extrapolating to sequences with a higher
length than those seen during training. The Transformer drops to a mean accuracy of 0.56; LSTMS2S
and ConvS2S have a testing accuracy of 0.30 and 0.32, respectively. Relatively speaking, removing
evidence for longer sequences thus resulted in a 62% drop for LSTMS2S and ConvS2S, and a 40%
drop for the Transformer. Both in terms of absolute and relative performance, the Transformer
model thus has a much greater productive potential than the other models, although its absolute
performance is still poor.

Comparing just the task accuracy and productivity accuracy of models shows that models have
difficulty with longer sequences but does still not give a definitive answer about the source of this
performance decrease. Since the productivity test set contains on average longer sequences, we
cannot see if the drop in performance is caused by poor productive power or by the inherent difficulty
of longer sequences. In Figure 9, we show the performance of the three models in relation to depth,
length and number of functions of the input sequences (blue lines) compared with the task accuracy
of the standard PCFG SET test data for the same lengths as plotted in Figure 7. For all models, the
productivity scores are lower for almost every depth, length and number of functions. This decrease
in performance is solely caused by the decrease in evidence for such sequences: The total number
of examples that models were trained on is the same across the two conditions, and the absolute
difficulty of the longer sequences is as well. With these two components factored out, we conclude
that models in fact struggle to productively generalise to longer sequences.'*

7.3.1 IMPACT OF LENGTH, DEPTH AND NUMBER OF FUNCTIONS

The depth plot in Figure 7 also provides some evidence for the inherent difficulty of deeper functions:
it shows that all models suffer from decreasing test accuracies for higher depths, even if these depths
are well-represented in the training data. When looking at the number of functions, the productivity
score of the Transformer is worse than its overall task success for any considered number of functions.
The scores for LSTMS2S and ConvS2S are instead very similar to the ones they reached after
training on the regular data. This shows that functions with high depths are difficult for LSTMS2S

13. For the details concerning the statistics of the adapted data, we refer back to Table 1.

14. To stop their generation of the answer, models have to explicitly generate an end of sequence (<eos>) symbol. A
reasonable hypothesis concerning the low scores on longer sequences is that they are due to models’ inability to
postpone the emission of this <eos> symbol. We dub this problem the <eos>-problem. To test whether the low
scores are due to early <eos> emissions, we compute how many of the wrongly emitted answers were contained in
the right answer. For LSTMS2S, ConvS2S and Transformer this was the case in 22%, 6% and 11% of the wrong
predictions. These numbers illustrate that the <eos>-problem indeed exists, but is not the main source of the
poor productive capacity of the different models.

25

and ConvS2S, even when some of them are included in the training data. Interestingly, considering
only the development of the productivity scores (in blue), it appears that both the LSTMS2S and
ConvS2S are relatively insensitive to the increasing length as measured by the number of tokens.
Their performance is just as bad for input sequences with 20 or 50 characters, which is on a par
with the scores they obtain on the longest sequences after training on the regular data. Apparently,
shorter sequences of unseen lengths are as challenging for these models as sequences of extremely
long lengths. Later, in the localism experiment, we will find more evidence that this sharp difference
between seen and unseen lengths is not accidental, but characteristic for the representations learned
by these two types of models.

7.4 Substitutivity

While the previous two experiments were centered around models’ ability to recombine known
phrases and rules to create new phrases, we now focus on the extent to which models are able
to draw analogies between words. In particular, we study under what conditions models treat
words as synonyms. We consider what happens when synonyms are equally distributed in the input
sequences and the case in which one of the synonyms only occurs in primitive contexts.

7.4.1 EQUALLY DISTRIBUTED SUBSTITUTIONS

For the substitutivity experiment where words and synonyms are equally distributed, Transformer
and ConvS2S perform on par. They both obtain an almost maximum consistency score (0.96 and
0.98, respectively). In Table 5, we see that both architectures put words and their synonyms closely
together in the embedding space (column 4 and 7), truly respecting the distributional hypothesis.
Surprisingly, LSTMS2S does not identify that two words are synonyms, even in this relatively simple
condition where the words are distributionally identical. Words and synonyms are at very distinct
positions in the embedding space (Table 5, column 1), although the distance between them is smaller
than the average between all words in the embedding space (Table 5, column 2). We hypothesise
that this low score of the LSTM-based models reflects the architecture’s inability to draw the type
of analogies required to model PCFG SET data, which is also mirrored in its relatively low overall
task accuracy.

LSTMS2S ConvS2S Transformer

Token ED P Other ED P Other ED P Other
repeat 0.51 0.59 0.96 0.11 0.36 0.86 0.09 0.36 0.80
remove_second 0.32 0.33 0.97 0.16 0.62 0.87 0.07 0.36 0.77
swap 0.41 0.36 0.93 0.17 0.36 0.90 0.09 0.40 0.79
append 0.32 0.35 0.97 0.12 0.50 0.83 0.07 0.38 0.73
Average 0.39 0.41 0.96 0.14 0.46 0.86 0.80 0.37 0.77
Consistency 0.74 0.62 - 0.96 0.61 - 0.98 0.88 -

Table 5: The average cosine distance between the embeddings of the indicated functions and their
synonymous counterparts in the equally distributed (ED) and primitive (P) setups of the substitu-
tivity experiments. For comparison, the average distance from the indicated functions to all other
regular function embeddings is given under ‘Other’. These distances were very similar across the
two substitutivity conditions and are averaged over both.

26

LSTMS2S ConvS2S Transformer

Consistency score all 0.62 £0.00 0.61 £ 0.03 0.88 4 0.04
Consistent correct 0.52 £ 0.01 0.59 £ 0.02 0.84 + 0.04
Consistent incorrect 0.10 £ 0.00 0.02 £ 0.00 0.04 £ 0.00

Consistency score across incorrect samples 0.20 + 0.01 0.05 £ 0.01 0.24 4+ 0.07

Table 6: Consistency scores for the primitive substitutivity experiment, expressing pairwise equality
for the outputs of synonymous sequences. Along with the overall consistency, we also show the
breakdown of this score into correct (consistent correct) and incorrect (consistent incorrect) pairs,
the scores if only correct (consistent correct) and incorrect as well as the ratio of consistent output
pairs among all incorrect output pairs. A pair is considered incorrect if at least one of its parts is
incorrect.

7.4.2 PRIMITIVE SUBSTITUTIONS

The primitive substitutivity test is substantially more challenging than the equally distributed one,
since models are only shown examples of synonymous expressions in a small number of primitive
contexts. This implies that words and their synonyms are no longer distributionally similar, and
that models are provided much less evidence for the meaning of synonyms, as there are simply fewer
primitive than composed contexts.

While the consistency scores for all models decrease substantially compared to the equally dis-
tributed setup, all models do pick up that there is a similarity between a word and its synonym. This
is reflected not only in the consistency scores (0.62, 0.61 and 0.88 on average for LSTM, convolution
and Transformer based models, respectively), but is also evident from the distances between words
and their synonyms, which are substantially lower than the average distances to other function em-
beddings (Table 5). For the LSTM-based model, the average distance is very comparable to the
average distance observed in the equally distributed setup. Its consistency score, however, goes down
substantially, indicating that word distances (computed between embeddings) give an incomplete
picture of how well models can account for synonymity when there is a distributional imbalance.

Synonymity vs few-shot learning The consistency score of the primitive substitutivity test
reflects two skills that are partly intertwined: the ability to few-shot learn the meanings of words
from very few samples and the ability to bootstrap information about a word from its synonym.
As already observed in the equally distributed experiment for the LSTMS2S, it is difficult to draw
hard conclusions about a model’s ability to infer synonymity when it is not able to infer consistent
meanings of words in general. When a model has a high score, on the other hand, it is difficult to
disentangle if it achieved this high score because it has learned the correct meaning of both words
separately, or because it has in fact understood that the meaning of those words is similar. That
is: the consistency score does not tell us whether output sequences are identical because the model
knows they should be the same, or simply because they are both correct. In the equally distributed
setup, the low word embedding distances for the ConvS2S and the Transformer strongly pointed to
the first explanation. For the primitive setup, the two aspects are more difficult to take apart.

Error consistency To separate a model’s ability to few-shot learn the meaning of a word from
very few primitive examples and its ability to bootstrap information about synonyms, we compute
the consistency score for model outputs that do not match the target output (incorrect outputs).
When a model makes identical but incorrect predictions for two input sequences with a synonym
substitution, this cannot be caused by the model merely having correctly learned the meanings of
the two words. It can thus be taken as evidence that it treats the word and its synonyms indeed as
synonyms.

27

In Table 6, we show the consistency scores for all output pairs (identical to the scores in Table 3),
the breakdown of this score into correct (consistent correct) and incorrect (consistent incorrect)
output pairs, and the ratio of incorrect output pairs that is consistent. The scores in row 2 and 3
show that the larger part of the consistency scores for all models is due to correct outputs. In row 4,
we see that models are seldom consistent on incorrect outputs. The Transformer maintains its first
place, but none of the architectures can be said to treat a word and its synonymous counterpart as
true synonyms. An interesting difference occurs between LSTMS2S and ConvS2S, whose consistency
scores on all outputs are similar, but quite strongly differ in consistency of erroneous outputs. These
scores suggest that the convolution-based architecture is better at few-shot learning than the LSTM-
based architecture, but the LSTM-based models are better at inferring synonymity. These results are
in line with the embedding distances shown for the primitive substitutivity experiment in Table 5,
which are on average also lower for LSTMS2S than for ConvS2S.

7.5 Localism

In the localism test, we investigate if models compute the meanings of input sequences using local
composition operations, in accordance with the hierarchical trees that specify their compositional
structure. We compare the output that models generate for regular input sequences with the output
they generate when we unroll the computation of this output sequence (for an example, see Figure 6).

7.5.1 CONSISTENCY SCORES

None of the evaluated architectures obtains a high consistency score for this experiment (0.45, 0.57
and 0.56 for LSTMS2S, ConvS2S and Transformer, respectively). Also in this test, the Transformer
models rank high, but the best-performing architecture is the convolution-based architecture (sig-
nificant in comparison with the LSTMS2S with p ~ 1073, insignificant in comparison with the
Transformer with p ~ 1071). Since the ConvS2S models are explicitly using local operations, this is
in line with our expectations.

7.5.2 INPUT STRING LENGTH

To understand the main cause of the relatively low scores on this experiment, we manually analyse
300 samples (100 per model type), in which at least one mistake was made during the unrolled
processing of the sample. We observe that the most common mistakes involve unrolled samples that
contain function applications to string inputs with more than five letters. An example of such a
mistake would be a model that is able to compute the meaning of reverse echo A B C D E but
not the meaning of reverse A B C D E E. As the outputs for these two phrases are identical, it
is clear that this inadequacy does not stem from models’ inability to generate the correct output
string. Instead, it indicates that the model does not compute the meaning of reverse echo A B C
D E by consecutively applying the functions echo and reverse. We hypothesise that, rather, models
generate representations for combinations of functions that are then applied to the input string at
once.

7.5.3 FUNCTION REPRESENTATIONS

While developing ‘shortcuts’ to apply combinations of functions all at once instead of explicitly
unfolding the computation does not necessarily contradict compositional understanding — imagine,
for instance, computing the outcome of the sum 5 + 3 - 3 — the results of the localism experiment
do point to another interesting aspect of the learned representations. Since unrolling computations
mostly leads to mistakes when the character length of unrolled inputs is longer than the maxi-
mum character string length seen during training, it casts some doubt on whether the models have
developed consistent function representations.

28

If a model truly understands the meaning of a particular function in PCFG SET, it should in
principle be able to apply this function to an input string of arbitrary length. Note that, in our
case, this ability does not require productivity in generating output strings, since the correct output
sequences are not distributionally different from those in the training data (in some cases, they may
even be exactly the same). Contrary to other setups, a failure to apply functions to longer sequence
lengths can thus not be explained by distributional or memory arguments. Therefore, the consistent
failure of all architectures to apply functions to character strings that are longer than the ones seen
in training suggests that, while models may have learned to adequately copy strings of length three
to five, they do not necessarily consider those operations the same.

To check this hypothesis, we test all functions in a primitive setup where we vary the length
of the string arguments they are applied to.!> For a model that develops several length-specific
representations for the same function, we expect the performance to go down abruptly when the
input string length exceeds the maximum length seen during training. If a model instead develops a
more general representation, it should be able to apply learned functions also to longer input strings.
Its performance on longer strings may drop for other, practical, reasons, but this drop should be
more smooth than for a model that has not learned a general purpose representation at all.

1.0
0.8
oy
@ 0.6
5
804
®
0.2
0.0
234567 89101112131415 2 3 4 56 7 8 9101112131415 2 3 4 5 6 7 8 9101112131415
number of characters number of characters number of characters
(a) LSTMS2S (b) ConvS2S (c) Transformer

Figure 10: Accuracy of the three architectures on different functions with increasingly long character
string inputs. The maximum character string length observed during training is 5. While Trans-
former and ConvS2S can, for most functions, generalise a little beyond this string length, LSTMS2S
models cannot.

The results of this experiment, plotted in Figure 10, demonstrate that all models have learned to
apply all functions to input strings up until length five, as evidenced by their near-perfect accuracy
on the samples of these lengths. On longer lengths, however, none of the models performs well. For
all runs, the performance of LSTMS2S immediately drops to zero when string arguments exceed
length five, the maximum string length seen during training. The model does not seem to be able to
leverage a general concept of any of the functions. The convolution-based and Transformer model do
exhibit some generalisation beyond the maximum string input length seen during training, indicating
that their representations are more general. Their average accuracy reaches zero only for input
arguments of more than 10 characters, suggesting that the descending scores may be due to factors of
performance rather than competence. The accuracies for Transformer and ConvS2S are comparable
for almost all functions, except reverse, for which the ConvS2S accuracy drops to zero for length six
in all three runs. Interestingly, none of the three architectures suffers from increasing the character
length of the first and second argument to remove_first and remove_second, respectively (not
plotted).

15. For binary functions, only one of the two string arguments exceeds the regular argument lengths.

29

7.6 Overgeneralisation

In our last test, we focus on the learning process, rather than on the final solution that is implemented
by converged models. In particular, we study if — during training — a model overgeneralises when
it is presented with an exception to a rule and — in case it does — how many evidence it needs to
see to memorise the exception. Whether a model overgeneralises indicates its willingness to prefer
rules over memorisation, but while strong overgeneralisation characterises compositionality, more
overgeneralisation is not necessarily better. An optimal model, after all, should be able to deal with
exceptions as well as with the compositional part of the data.

7.6.1 OVERGENERALISATION PEAK

During training, we monitor the number of exception samples for which a model does not generate
the correct meaning, but instead outputs the meaning that is in line with the rule instantiated in
the rest of the data. At every point in training, we define the strength of the overgeneralisation as
the percentage of exceptions for which a model exhibits this behaviour. We call the point in training
where the overgeneralisation is highest the overgeneralisation peak.

In Table 3, we show the average height of the overgeneralisation peak for all three architectures,
using an exception percentage of 0.1%. This quantity equals the accuracy of the model predictions on
the input sequences whose outputs have been replaced by exceptions, but measured on the original
targets that follow from the interpretation functions of PCFG SET. The numbers in Table 3 illustrate
that all models show a rather high degree of overgeneralisation. At some point during the learning
process, the Transformer applies the rule to 84% of the exceptions and the LSTMS2S and ConvS2S
to 73% and 78% respectively.

7.6.2 OVERGENERALISATION PROFILE

More interesting than the height of the peak, is the profile that different architectures show during
learning. In Figure 7, we plot this profile for 4 different exception percentages. The lower areas (in
red), indicate the overgeneralisation strength, whereas the memorisation strength — the accuracy of
a model on the adapted outputs, that can only be learned by memorisation — is indicated in the
upper part of the plots, in blue. The grey area in between indicates the percentage of exception
examples for which a model outputs neither the correct answer, nor the rule-based answer.

Exception percentage The profiles show that, for all architectures, the degree of overgenerali-
sation strongly depends on the number of exceptions present in the data. All architectures show
overgeneralisation behaviour for exception percentages lower than 0.5% (first three rows), but hardly
any overgeneralisation is observed when 0.5% of a function’s occurrence is an exception (bottom
row). When the percentage of exceptions becomes too low, on the other hand, all architectures have
difficulties memorising them at all: when the exception percentage is 0.01% of the overall function
occurrence, only the convolution-based architecture can memorise the correct answers to some ex-
tent (middle column, top row). LSTMS2S and Transformer keep predicting the rule-based output
for the sequences containing exceptions, even after convergence.

Learning an exception The LSTM-based models, in general, appear to find it difficult to ac-
commodate both rules and exceptions at the same time. The Transformer and convolution-based
model overgeneralise at the beginning of training, but then, once enough evidence for the exception
is accumulated, gradually change to predicting the correct output for the exception sequences. This
behaviour is most strongly present for ConvS2S, as evidenced by the thinness of the grey stripe sep-
arating the red and the blue area during training. For the LSTM-based models, on the other hand,
the decreasing overgeneralisation strength is not matched by an increasing memorisation strength.
After identifying that a certain sequence is not following the same rule as the rest of the corpus,
the LSTM does not predict the correct meaning, but instead starts generating outputs that match

30

% LSTMS2S ConvS2S Transformer

1.00

>0.75
8]

0.01 %0.50

(]
©0.25

memorisation

overgeneralisation overgeneralisation overgeneralisation

0.00
100 TS
>0.75
8
0.05 3050

(]
©0.25

memorisation meRorisation

vergeneralisation

overgeneralisation overgeneralisation

0.00

1.00 :
\—/—/\/ memorisation
0.1 .

vergeneralisation

memorisation

accuracy
o o
o ~
o o

o
N
a

overgéneralisation

0.00

1.00

0.75 memorisation memorisation memorisation
>V,
o

0.50
>

o
©0.25

0.00 — T —

5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
epoch epoch epoch

Table 7: Overgeneralisation profiles over time for LSTMS2S, ConvS2S and Transformer for exception
percentages of 0.01%, 0.05%, 0.1% and 0.5% (in increasing order, from top to bottom). The lower
area of the plots, in red, indicates the mean fraction of exceptions (with standard deviation) for
which an overgeneralised output sequence is predicted (i.e. not the ‘correct’ exception output for
the sequence, but the output that one would construct following the meaning of the functions as
observed in the rest of the data). We denote this area as ‘overgeneralisation’. The upper areas, in
blue, indicate the mean fraction of the exception sequences (with standard deviation) for which the
model generates the true output sequence, which — as it falls outside of the underlying compositional
system — has to be memorised. We call this the ‘memorisation’ area. The grey area in between
corresponds to the cases in which a model does not predict the correct output, nor the output that
would be expected if the rule were applied.

31

neither the correct exception output, nor the original target for the sequence. After convergence,
its accuracy on the exception sequences is substantially lower than the overall corpus accuracy. As
the bottom plot (with an exception percentage of 0.5%) indicates that the LSTM-based models do
not have problems with learning exception percentages per se, they appear to struggle with hosting
exceptions for words if little evidence for such anomalous behaviour is present in the training data.

8. Discussion

With the rising successes of models based on deep learning, evaluating the compositional skills of
neural network models has attracted the attention of many researchers. Many empirical studies have
been presented that evaluate compositionality of neural models in different ways, but they have not
lead to consensus about whether neural models can in fact adequately model compositional data.
We argue that this lack of consensus stems from a deeper issue than the results of the proposed tests:
While many researchers have a strong intuition about what it means for a model to be compositional,
there is no explicit agreement on what defines compositionality and how it should be tested for in
neural networks.

In this paper, we proposed an evaluation framework that addresses this problem, with a series
of tests for compositionality that are explicitly motivated by theoretical literature about composi-
tionality. Our evaluation framework contains five independent tests, that consider complementary
aspects of compositionality that are frequently mentioned in the literature about compositionality.
These five tests allow to investigate (i) if models systematically recombine known parts and rules
(systematicity) (ii) if models can extend their predictions beyond the length they have seen in the
training data (productivity) (iii) if models’ predictions are robust to synonym substitutions (sub-
stitutivity) (iv) if models’ composition operations are local or global (localism) and (v) if models
favour rules or exceptions during training (overgeneralisation). We formulate these tests on a task-
independent level, disentangled from a specific down-stream task. With this, we offer a versatile
evaluation paradigm which is able to grade compositional abilities of a model on five different levels,
that can be instantiated for any chosen sequence-to-sequence task.

To show-case our evaluation paradigm, we instantiate the five tests on a highly compositional
artificial data set we dub PCFG SET: a sequence-to-sequence translation problem which requires
to compute meanings of sequences that are generated by a probabilistic context free grammar by
recursively applying string edit operations. This data set is designed such that modelling it ade-
quately requires a fully compositional solution, and it is generated such that its length and depth
distributions match those of a natural corpus of English. We use our instantiated tests to evaluate
three popular sequence-to-sequence architectures: an LSTM-based (LSTMS2S), a convolution-based
(ConvS2S) and an all-attention model (Transformer). For each test, we further conduct a number of
auxiliary tests that can be used to further increase the understanding of how this aspect is treated
by a particular architecture. We will make all data sets and evaluation scripts to conduct these
evaluations freely available online upon publication.

The overall accuracy on PCFG SET is relatively high for all models, with the Transformer
model coming out on top with an accuracy of over 90%. A more detailed picture is given by the
five compositionality tests, that indicate that — despite our careful data design, high scores do still
not necessarily imply that the trained models follow the intended compositional solution and that
illustrate how they handle different aspects that could be considered important for compositionality.

Firstly, our systematicity test shows that none of the architectures successfully generalises
to pairs of words that were not observed together during training, a result that confirms earlier
studies such as the ones from Loula et al. (2018) and Lake and Baroni (2018). The difference of
the systematicity scores with the overall task accuracy is quite stark for all models: a drop of 35%,
38% and 26% for LSTMS2S, ConvS2S and Transformer, respectively. We hypothesise that this
result suggests that the low accuracy on the systematicity test does not stem from poor systematic
capacity in general, but that the models instead use different segmentations of the input, applying

32

— for instance — multiple functions at ones, instead of all of the functions in a sequential manner.
While larger chunking to ease processing is not necessarily a bad strategy, it is desirable if models
can also maintain a separate representation of the units that make up such chunks, as these units
could be useful or needed in other sequences.

With our productivity test, we assess if models can productively generalise to sequences that
are longer than the ones they observed in training. To evaluate this, we redistribute the training
examples such that there is a strict separation of the input sequence lengths in the train and test data.
By comparing the results with the accuracies of models that are trained on data sets that contain
at least some evidence for longer sequences, we tease apart the overall difficulty of modelling longer
sequences from the ability to generalise to unseen lengths. Also in this test, the Transformer model
outperforms the other two architectures, but none of the architectures exhibits strong productive
power to sequences of unseen lengths: The Transformer accuracy on the productivity test set is only
0.56. By computing how often models’ predictions were strictly contained within the true output
sequence, we assess if the poor productive power of all models is caused by early emission of the
end of sequence symbol. We find that such cases indeed exist (22%, 6% and 11% for LSTMS2S,
ConvS2S an Transformer, respectively), but early stopping of the generation is not the main cause
of the low productivity scores.

In our substitutivity test, we compare how models react to artificially introduced synonyms
occurring in different types of scenarios. Rather than considering their behaviour in terms of se-
quence accuracy, we compute how consistent models predictions are — correct or incorrect — between
sentences with synonym substitutions. When synonyms are equally distributed in the input data,
both Transformer and ConvS2S obtain high consistency scores (0.98 and 0.96, respectively), while
LSTMS2S is substantially less consistent (0.74). This difference is also reflected in the distance be-
tween the embeddings of words and synonyms, which is much lower for Transformer and ConvS2S.
When one of the synonyms is only presented in a few very short sequences, the consistency score
of ConvS2S drops to the same level as the LSTMS2S (0.61), while the Transformer still maintains
a relatively high synonym consistency of 0.88. Also the embeddings of synonyms remain relatively
close in the Transformer models’ embedding space, despite the fact that they are distributionally
dissimilar. To take apart the ability to learn from very few examples and to infer synonymity, we
also consider how consistent models are on incorrect outputs. Here, we observe that none of the
models can be said to truly treat words and their counterparts as synonyms. The Transformer model
is, again, the most consistent, but with a score of only 0.24. This test shows an interesting difference
between LSTMS2S and ConvS2S: where the former appears to be better at inferring that words are
synonyms, the latter is better at few-shot learning a words meaning from very few examples.

With our localism test, we consider if models apply local composition operations that are
true to the syntactic tree of the input sequences, or rather compute the meaning of sequence in
a more global fashion. In line with the results of the systematicity test, models do not appear to
truly follow the syntactic tree of the input to compute its meaning. In 45%, 57% and 56% of the
test samples for LSTMS2S, ConvS2S and Transformer, respectively, enforcing a local computation
results in a different answer than the original answer provided by the model. An error analysis
suggests that these results are largely due to function applications to longer string sequences. With
an additional test in which we monitor the accuracy of models functions applied to increasingly
long string inputs, we find evidence that models may not learn general-purpose representations
of functions, but instead use different protocols for copy once or copy twice. We see that the
accuracy of LSTMS2S immediately drops to 0 when string inputs are longer than the ones observed
in training; The performance of ConvS2S and Transformer, instead, drops rapidly, but remains
above 0 for slightly longer string inputs. These results indicate that LSTMS2S may indeed not have
learned a general-purpose representation for functions, while the decreasing accuracy of ConvS2S
and Transformer could be related more to performance rather than competence issues.

In our last test, we study overgeneralisation during training, by monitoring the behaviour of
models on artificially introduced exceptions to rules. We find that for small amount of exceptions

33

(up to 0.1% of the overall occurrence of the rule in the data) all architectures overgeneralise in
the beginning of their training. As overgeneralisation implies that models overextend rules in cases
where this is explicitly contradicted by the data, we take this as a clear indication that models in
fact capture the underlying rule at that point. For very small amounts of exceptions (0.01% of the
overall rule occurrence), both Transformer and LSTMS2S fail to learn the exception at all: even
after their training has converged they overgeneralise on the sequences containing exceptions. To a
lesser extent, also ConvS2S struggles with capturing low frequent exceptions. LSTMS2S generally
appears to have difficulty with accommodating both rules and exceptions. Often, after learning that
a certain rule should not be applied, LSTMS2S models do not memorise the true target, but proceed
to predict something which matches nor this target nor the general rule. ConvS2S and Transformer
do not show such patterns: when their overgeneralisation goes down, their memorisation score goes
up. Aside from in the beginning of their training, they rarely predict something outside of these
options. For larger percentages of exceptions (from 0.5% of the overall rule occurrence) none of the
architectures really exhibits overgeneralisation behaviour.

In our collection of tests, we aimed to cover several facets of compositionality. We believe that as
such, our collection of tests can serve as an evaluation paradigm to probe the capabilities of different
neural architectures networks in the light of compositionality. There are, of course, also aspects of
compositionality that we did not cover. We therefore do not consider our evaluation an end point,
but rather a stepping stone on the way, that we hope can provide the grounds for a clearer discussion
concerning the role and importance of compositionality in neural networks, concerning both aspects
that we did and did not include.

Furthermore, we instantiated our tests on an artificial data set that is entirely explainable in
terms of compositional phenomena. This permitted us to focus on the compositional capabilities of
different models in the face of compositional data and allowed us to isolate compositional processing
from other signals that are found in more realistic data sets. However, it leaves open the question
of how much the compositional traits we identified are expressed and can be exploited by networks
when facing natural data. Despite the fact that they are not informed by knowledge of language
or semantic composition, neural networks have achieved tremendous successes in almost all natural
language processing tasks. While their performance is still far from perfect, it is not evident that
their remaining failures stem from their inability to deal with compositionality. In the future, we plan
to instantiate our tests also in natural language domains such as translation and summarisation.
The results of such a study would provide valuable information about how well models pick up
compositional patterns in more noisy environments, but — perhaps even more importantly — could
also provide insights about the importance of these different aspects of compositionality to model
natural data.

In summary, we provided an evaluation paradigm that allows to test the extent to which five
distinct, theoretically motivated aspect of compositionality are represented by artificial neural net-
works. By instantiating these tests for an artificial data set and applying the resulting tests on three
different successful sequence-to-sequence architectures, we shed some light on which aspects of com-
positionality may provide problematic for different architectures. These results illustrate well that
to test for compositionality in neural networks it does not suffice to consider an accuracy score on a
single downstream task, even if this task is designed to be highly compositional. Models may capture
some compositional aspects of this data set very well, but fail to model other aspects that could be
considered part of a compositional behaviour. As such, our the results themselves demonstrate the
need for the more extensive set of evaluation criteria that we aim to provide with this work. We
hope that future researchers will use our collection of tests to evaluate new models, to investigate
the impact of hyper-parameters or to study how compositional behaviour is acquired during train-
ing. To facilitate the usage of our test suite we have made the PCFG SET data generator, all test
sets and the models trained by us available online.'® We further hope that our theoretical moti-

16. Link will be made available upon publication.

34

vation, the tests themselves and the analysis that we presented of its application on three different
sequence-to-sequence architectures will mark a step forward in the having a clear discussion about
compositionality and deep learning, both from a practical and a theoretical perspective.

Acknowledgements

We thank Marco Baroni, Yoav Goldberg, Louise McNally, Ryan Nefdt, Sandro Pezzelle and Shane
Steinert-Threlkeld for proofreading versions of this paper and providing us helpful feedback. Dieuwke
Hupkes is funded by the Netherlands Organization for Scientific Research (NWO), through a Grav-
itation Grant 024.001.006 to the Language in Interaction Consortium. Elia Bruni is funded by the
European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie
grant agreement No 790369 (MAGIC).

References

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly learning to
align and translate. In Proceedings of the 3rd International Conference on Learning Representa-
tions (ICLR).

Bahdanau, D., Murty, S., Noukhovitch, M., Nguyen, T. H., de Vries, H., and Courville, A. (2018).
Systematic generalization: What is required and can it be learned? In International Conference
on Learning Representations (ICLR).

Bai, S., Kolter, J. Z., and Koltun, V. (2018). An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling. CoRR, abs/1803.0127.

Baroni, M. and Zamparelli, R. (2010). Nouns are vectors, adjectives are matrices: Representing
adjective-noun constructions in semantic space. In Proceedings of the 2010 Conference on Em-
pirical Methods in Natural Language Processing, pages 1183-1193. Association for Computational
Linguistics.

Belinkov, Y., Marquez, L., Sajjad, H., Durrani, N., Dalvi, F.; and Glass, J. (2017). Evaluating layers
of representation in neural machine translation on part-of-speech and semantic tagging tasks. In
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pages 1-10.

Blevins, T., Levy, O., and Zettlemoyer, L. (2018). Deep RNNs encode soft hierarchical syntax.
In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics,
volume 2, pages 14-19.

Bojar, O., Buck, C., Chatterjee, R., Federmann, C., Graham, Y., Haddow, B., Huck, M., Jimeno-
Yepes, A., Koehn, P., and Kreutzer, J., editors (2017). Proceedings of the Second Conference on
Machine Translation, WMT 2017. Association for Computational Linguistics.

Bowman, S. R., Manning, C. D., and Potts, C. (2015). Tree-structured composition in neural
networks without tree-structured architectures. In Proceedings of the 2015th International Con-
ference on Cognitive Computation: Integrating Neural and Symbolic Approaches-Volume 1583,
pages 37-42. CEUR-WS. org.

Carnap, R. (1947). Meaning and necessity: a study in semantics and modal logic. University of
Chicago Press.

Chomsky, N. (1956). Three models for the description of language. IRE Transactions on information
theory, 2(3):113-124.

35

Chorowski, J. K., Bahdanau, D., Serdyuk, D., Cho, K., and Bengio, Y. (2015). Attention-based
models for speech recognition. In Advances in neural information processing systems, pages 577—

985.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation of gated recurrent
neural networks on sequence modeling. CoRR, abs/1412.3555.

Clark, S. (2015). Vector space models of lexical meaning. The Handbook of Contemporary semantic
theory, pages 493-522.

Denil, M., Demiraj, A., Kalchbrenner, N., Blunsom, P., and de Freitas, N. (2014). Modelling,
visualising and summarising documents with a single convolutional neural network. CoRR,
abs/1406.3830.

Dessi, R. and Baroni, M. (2019). CNNs found to jump around more skillfully than rnns: Com-
positional generalization in seq2seq convolutional networks. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics (ACL), Short Papers, pages 3919-3923.

Erk, K. (2012). Vector space models of word meaning and phrase meaning: A survey. Language and
Linguistics Compass, 6(10):635-653.

Fodor, J. A. and Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: A critical
analysis. Cognition, 28(1-2):3-71.

Gehring, J., Auli, M., Grangier, D., and Dauphin, Y. N. (2017a). A convolutional encoder model
for neural machine translation. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (ACL), Long Papers, volume 1, pages 123-135.

Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin, Y. N. (2017b). Convolutional sequence
to sequence learning. In Proceedings of the 34th International Conference on Machine Learning,
(ICML), pages 1243-1252.

Goldberg, Y. (2019). Assessing BERT’s syntactic abilities. CoRR, abs/1901.05287.

Goller, C. and Kuchler, A. (1996). Learning task-dependent distributed representations by back-
propagation through structure. In Proceedings of International Conference on Neural Networks
(ICNN’96), volume 1, pages 347-352. IEEE.

Gulordava, K., Bojanowski, P., Grave, E., Linzen, T., and Baroni, M. (2018). Colorless green re-
current networks dream hierarchically. In Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies

(NAACL), volume 1, pages 1195-1205, New Orleans, LA.

He, X. and Golub, D. (2016). Character-level question answering with attention. In Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
1598-1607.

Hirschberg, J. and Manning, C. D. (2015). Advances in natural language processing. Science,
349(6245):261-266.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8):1735—
1780.

Hupkes, D., Singh, A., Korrel, K., Kruszewski, G., and Bruni, E. (2019). Learning composition-
ally through attentive guidance. In International Conference on Computational Linguistics and
Intelligent Text Processing (CICLing).

36

Hupkes, D., Veldhoen, S., and Zuidema, W. (2018). Visualisation and ’diagnostic classifiers’ reveal
how recurrent and recursive neural networks process hierarchical structure. Journal of Artificial

Intelligence Research, 61:907-926.
Husserl, E. (1913). Logische Untersuchungen. Max Niemeyer.

Jacobson, P. (2002). The (dis) organization of the grammar: 25 years. Linguistics and Philosophy,
25(5):601-626.

Janssen, T. (1983). Foundations and applications of Montague grammar. Mathematisch Centrum.

Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick, C. L., and Girshick, R. (2017).
CLEVR: A diagnostic dataset for compositional language and elementary visual reasoning. In
IEEFE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1988-1997.

Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., and Wu, Y. (2016). Exploring the limits of
language modeling. CoRR, abs/1602.02410.

Kim, Y., Rush, A. M., Yu, L., Kuncoro, A., Dyer, C., and Melis, G. (2019). Unsupervised recurrent
neural network grammars. In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long

and Short Papers), pages 1105-1117.

Klein, G., Kim, Y., Deng, Y., Senellart, J., and Rush, A. M. (2017). Opennmt: Open-source toolkit
for neural machine translation. In Bansal, M. and Ji, H., editors, Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (ACL), System Demonstrations, pages
67-72. Association for Computational Linguistics.

Korrel, K., Hupkes, D., Dankers, V., and Bruni, E. (2019). Transcoding compositionally: using
attention to find more generalizable solutions. In Proceedings of the 2019 ACL Workshop Black-
boxNLP: Analyzing and Interpreting Neural Networks for NLP, page 111.

Lake, B. and Baroni, M. (2018). Generalization without systematicity: On the compositional skills of
sequence-to-sequence recurrent networks. In 35th International Conference on Machine Learning,
ICML 2018, pages 4487-4499. International Machine Learning Society (IMLS).

Le, P. and Zuidema, W. (2015). The forest convolutional network: Compositional distributional
semantics with a neural chart and without binarization. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, pages 1155-1164.

Lin, Y., Tan, Y. C., and Frank, R. (2019). Open sesame: Getting inside BERT’s linguistic knowledge.
In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 241-253.

Linzen, T., Dupoux, E., and Goldberg, Y. (2016). Assessing the ability of LSTMs to learn syntax-
sensitive dependencies. Transactions of the Association for Computational Linguistics, 4:521-535.

Liska, A., Kruszewski, G., and Baroni, M. (2018). Memorize or generalize? searching for a compo-
sitional RNN in a haystack. CoRR, abs/1802.06467.

Loula, J., Baroni, M., and Lake, B. M. (2018). Rearranging the familiar: Testing compositional
generalization in recurrent networks. In Proceedings of the EMNLP Workshop: Analyzing and
Interpreting Neural Networks for NLP, pages 108-114.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J., and McClosky, D. (2014).
The Stanford CoreNLP natural language processing toolkit. In Association for Computational
Linguistics (ACL) System Demonstrations, pages 55—60.

37

Marcus, G. F. (2003). The algebraic mind: Integrating connectionism and cognitive science. MIT
press.

Marcus, G. F., Pinker, S., Ullman, M., Hollander, M., Rosen, T. J., Xu, F., and Clahsen, H.
(1992). Overregularization in language acquisition. Monographs of the society for research in
child development, pages i-178.

Marecek, D. and Rosa, R. (2018). Extracting syntactic trees from transformer encoder self-attentions.
In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 347—-349.

Miller, G. A. and Charles, W. G. (1991). Contextual correlates of semantic similarity. Language and
cognitive processes, 6(1):1-28.

Mitchell, J. and Lapata, M. (2008). Vector-based models of semantic composition. Proceedings of
ACL-08: HLT, pages 236—244.

Mul, M. and Zuidema, W. (2019). Siamese recurrent networks learn first-order logic reasoning and
exhibit zero-shot compositional generalization. CoRR, abs/1906.00180.

Pagin, P. (2003). Communication and strong compositionality. Journal of Philosophical Logic,
32(3):287-322.

Pagin, P. and Westerstahl, D. (2010). Compositionality i: Definitions and variants. Philosophy
Compass, 5(3):250-264.

Partee, B. (1995). Lexical semantics and compositionality. An invitation to cognitive science:
Language, 1:311-360.

Penke, M. (2012). The dual-mechanism debate. In The Oxzford handbook of compositionality. Oxford
University Press.

Pinker, S. (1984). Language learnability and language development. Cambridge, MA: Harvard
University Press.

Potts, C. (2019). A case for deep learning in semantics: Response to pater. Language.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language models
are unsupervised multitask learners. OpenAlI Blog, 1(8).

Raganato, A. and Tiedemann, J. (2018). An analysis of encoder representations in transformer-based
machine translation. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, pages 287-297.

Rumelhart, D. E. and McClelland, J. L. (1986). Parallel distributed processing: explorations in the
microstructure of cognition, volume 2, chapter On learning the past tenses of English verbs, pages
216-271. MIT Press, Cambridge.

Saxton, D., Grefenstette, E., Hill, F., and Kohli, P. (2019). Analysing mathematical reasoning
abilities of neural models. In International Conference on Learning Representations (ICLR).

Shi, X., Padhi, I., and Knight, K. (2016). Does string-based neural MT learn source syntax? In
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages
1526-1534.

Socher, R., Manning, C. D., and Ng, A. Y. (2010). Learning continuous phrase representations and
syntactic parsing with recursive neural networks. In Proceedings of the NIPS-2010 Deep Learning
and Unsupervised Feature Learning Workshop, pages 1-9.

38

Sutskever, 1., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural networks.
In Advances in neural information processing systems (NIPS), pages 3104-3112.

Szabd, Z. (2012). The case for compositionality. The Ozford handbook of compositionality, 64:80.

Tenney, 1., Das, D., and Pavlick, E. (2019a). BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL),
page 45934601.

Tenney, 1., Xia, P., Chen, B., Wang, A., Poliak, A., McCoy, R. T., Kim, N., Van Durme, B., Bowman,
S. R., Das, D, et al. (2019b). What do you learn from context? Probing for sentence structure
in contextualized word representations. In Proceedings of the 7th International Conference on
Learning Representations (ICLR).

Tran, K., Bisazza, A., and Monz, C. (2018). The importance of being recurrent for modeling
hierarchical structure. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pages 4731-4736.

Turney, P. D. and Pantel, P. (2010). From frequency to meaning: Vector space models of semantics.
Journal of artificial intelligence research, 37:141-188.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing
Systems, pages 5998-6008.

Veldhoen, S., Hupkes, D., and Zuidema, W. (2016). Diagnostic classifiers: Revealing how neural
networks process hierarchical structure. In Proceedings of the NIPS2016 Workshop on Cognitive
Computation: Integrating Neural and Symbolic Approaches.

Vig, J. and Belinkov, Y. (2019). Analyzing the structure of attention in a transformer language
model. Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 63-76.

Wolf, T. (2019). Some additional experiments extending the tech report assessing BERTs syntactic
abilities by yoav goldberg. Technical report, Technical report.

Zadrozny, W. (1994). From compositional to systematic semantics. Linguistics and philosophy,
17(4):329-342.

39

Appendix A. Naturalisation of artificial data

The artificially generated PCFG SET data are transformed so as to mimic the distribution of a
natural language data set according to the following procedure:

1. Use a natural language data set Dy, define a set of features F', and for each f € F, compute
the value f(s) for each sentence s € Dy .

2. Generate a large sample Di of PCFG SET data using random probabilities on production
rules for each instance.

3. Transform Dpg as follows:

(vi)
(vii)

(viii)

For each feature f € F', specify a feature increment iy.

For each s € Dy, compute the partitioning vector v(s), which is the concatenation of the
values | f(s)/is] for each feature f € F.

Partition Dy into subsets by clustering instances with the same partitioning vector. For
any such subset DY, let v(D%) denote the partitioning vector of its members. And for
any partitioning vector v, let v;,l (v) denote the subset D% C Dy whose members have
partitioning vector v (so that v(D%) = v).

Of the identified subsets, determine the largest set D% C Dy. Call this set DY,
Partition Dg in the same way as Dy, yielding subsets D%. Let the subset D%, such that
v(Dy) = v(DNY) be D> .

Initialise an empty set Df.

(v(D}) | x| D™
D]

Of each D%, randomly pick lon

members, and assign them to Df,.

If necessary, repeat (i) - (vii) for different feature increments f;. For n features, fit an
n-variate Gaussian to each of the transformed sets Df,. Choose the set with the lowest
Kullback-Leibler divergence from the n-variate Gaussian approximation of Dy .

4. Use maximum likelihood estimation to estimate the PCFG parameters of Df and generate
more PCFG SET data using these parameters.

5. If necessary, apply step 3 to the data thus generated.

40

	Introduction
	Related Work
	Evaluating compositionality with artificial data
	Arithmetic language and mathematical reasoning
	SCAN
	Lookup tables
	Logical inference

	Evaluating compositionality with natural data
	Number agreement
	Syntax in Machine Translation

	Intermediate conclusions

	Testing compositionality
	Systematicity
	Testing systematicity

	Productivity
	Testing productivity

	Substitutivity
	Testing substitutivity

	Localism
	Testing localism

	Overgeneralisation
	Testing overgeneralisation

	Data
	Input sequences: syntax
	Output sequences: semantics
	Data construction

	Architectures
	LSTMS2S
	ConvS2S
	Transformer

	Experiments
	Data
	Naturalisation of structural properties
	Sentence selection

	Actualisations of compositionality tests
	Systematicity
	Productivity
	Substitutivity
	Localism
	Overgeneralisation

	Training
	LSTMS2S
	ConvS2S
	Transformer

	Evaluation
	Accuracy
	Consistency

	Results
	Task accuracy
	Correlation with length and depth
	Function difficulty

	Systematicity
	Systematicity vs task accuracy

	Productivity
	Impact of length, depth and number of functions

	Substitutivity
	Equally distributed substitutions
	Primitive substitutions

	Localism
	Consistency scores
	Input string length
	Function representations

	Overgeneralisation
	Overgeneralisation peak
	Overgeneralisation profile

	Discussion
	Naturalisation of artificial data

