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Abstract

Referential games offer a grounded learning environment for
neural agents which accounts for the fact that language is
functionally used to communicate. However, they do not take
into account a second constraint considered to be fundamen-
tal for the shape of human language: that it must be learnable
by new language learners and thus has to overcome a trans-
mission bottleneck. In this work, we insert such a bottleneck
in a referential game, by introducing a changing population
of agents in which new agents learn by playing with more
experienced agents. We show that mere cultural transmission
results in a substantial improvement in language efficiency
and communicative success, measured in convergence speed,
degree of structure in the emerged languages and within-
population consistency of the language. However, as our core
contribution, we show that the optimal situation is to co-
evolve language and agents. When we allow the agent pop-
ulation to evolve through genotypical evolution, we achieve
across the board improvements on all considered metrics.
These results stress that for language emergence studies cul-
tural evolution is important, but also the suitability of the ar-
chitecture itself should be considered.

Introduction
Human languages show a remarkable degree of structure
and complexity, and how such a complex system can have
emerged is still an open question. One concept frequently
named in the context of language evolution is cultural evolu-
tion. Unlike animal languages, which are taken to be mostly
innate, human languages must be re-acquired by individ-
uals (Pinker and Bloom 1990; Hurford 1998). This pres-
sures them to fit two constraints that govern their cross-
generational transmission: They must be learnable by new
language users, and they must allow effective communica-
tion between proficient language users (see, e.g. Smith and
Kirby, 2012).

In the recent past, computational studies of language
emergence using referential games (see Section for a re-
view) has received a new wave of attention. These studies
are motivated by the second constraint, that language is used
to communicate. The first constraint, on the other hand, is in
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this framework not considered: language is not transmitted
from agent to agent and there is thus no need for agents to
develop languages that would survive a transmission bottle-
neck.1

In this work, we introduce a transmission bottleneck in
a population of agents playing referential games, implic-
itly modelling cultural evolution. However, merely adding
a transmission bottleneck is not enough. Since the types of
language that may emerge through passing this bottleneck
are not just dependent on the existence of a bottleneck, but
also on the shape of the bottleneck, which is determined by
the biases of the architecture of the agents playing the game
(their genotypical design). If the genotypical design of those
agents is not suitable to solve this task through communica-
tion, they will – at best – converge to a language that doesn’t
allow for effective communication or is difficult to learn for
every new agent or – at worst – not converge to an appro-
priate culturally transmittable language at all. Therefore, in
this work, we study the co-evolution of language and archi-
tecture in referential games.

To this end, we introduce the Language Transmission En-
gine to model both cultural and genetic evolution in a pop-
ulation of agents. We demonstrate that the emerging lan-
guages benefit from including cultural transmission as well
as genetic evolution, but the best results are achieved when
both types of evolution are included and languages and
agents can co-evolve.

Related Work
Language Emergence Games
Much work has been done on the emergence of language
in artificial agents and investigating its subsequent structure,
compositionality and morphosyntax (Kirby 2001; Kirby and
Hurford 2002). The original computer simulations dealt
with logic and symbolic representations (Kirby 2001; Chris-
tiansen and Kirby 2003), but with the advent of modern
deep learning methods and sequence-to-sequence models

1In fact, multiple studies, although perhaps unrelatedly, multi-
ple recent studies have shown that the languages emerging in such
games do not share even basic properties of human languages (e.g.
Bouchacourt and Baroni, 2018).



(Sutskever, Vinyals, and Le 2014), there has been a renewed
interest in simulating the emergence of language through
neural network agents (Lazaridou, Peysakhovich, and Ba-
roni 2017; Havrylov and Titov 2017).

In the exploration of language emergence, different train-
ing approaches and tasks have been proposed to encourage
agents to learn and develop communication. These tasks are
commonly set up in an end-to-end setting where reinforce-
ment learning can be applied. This is often a two-player ref-
erential game where one agent must communicate the infor-
mation it has access to (typically an image), while the other
must guess it out of a lineup (Evtimova et al. 2018; Lazari-
dou, Peysakhovich, and Baroni 2017). Mordatch and Abbeel
(2018) and Choi, Lazaridou, and de Freitas (2018) find that
structure and compositionalility can arise in emerged lan-
guages in such setups; Kottur et al. (2017) show that natural
language does not arise naturally and has to be incentivised
by imposing specific restrictions on games and agents.

Evolution of Language
The evolution of human language is a well-studied but still
poorly understood topic. One particular open question con-
cerns the relation between two different evolutionary pro-
cesses: genetic evolution of the agents in the population and
cultural evolution of the language itself (Fitch 2010). Chris-
tiansen and Kirby 2003 assert that the question of genetic
versus cultural evolution ultimately arises from three dis-
tinct but interacting adaptive systems: individual learning,
cultural transmission, and genetic evolution.

Cultural Evolution Cultural transmission is thought to
enforce structure and compression to languages, since a lan-
guage must be used and learned by all individuals of the
culture in which it resides and at the same time be suitable
for a variety of tasks. Kirby et al. 2015 define those two
pressures as compressibility and expressivity and find that
structure arises from the trade-off between these pressures
in generated languages. The importance of cultural evolu-
tion for the emergence of structure is supported by a number
of artificial language learning studies (e.g. Saldana et al.,
2018) and computational studies using the Iterated Learn-
ing paradigm, in which agents learn a language by observ-
ing the output produced by another agent from the previ-
ous ‘generation’ (Kalish, Griffiths, and Lewandowsky 2007;
Kirby, Cornish, and Smith 2008; Kirby et al. 2015). An al-
ternative way of imposing cultural pressures on agents, is
by simulating a large population of them and pairing agents
randomly to solve a communicative game (Cogswell et al.
2019). This approach is more naturally aligned with cultural
pressures in humans (see e.g. Wray and Grace, 2007) and is
the one we use in this paper.

Genetic Evolution While there is much controversy about
the selection pressures under which the fundamental traits
underlying the human ability to learn and use language
evolved in other humans, that genetic evolution played an
essential role in endowing humans with the capabilities to
learn and use language is generally undebated. Pre-modern
humans, for instance, did not have the ability to speak or
understand complex structures (Fitch 2010).

There are several approaches to simulate genetic evolu-
tion of neural network agents. Neural Architectural Search
(NAS) focuses on searching the architecture space of the
networks, unlike many traditional evolutionary techniques
which often include parameter weights in their search space.
Some of the earlier techniques such as NEAT gained con-
siderable traction as a sound way of doing topology search
using biologically inspired concepts (Stanley and Miikku-
lainen 2002). NAS methods however have mostly reverted
to optimising solely the neural architecture and using gradi-
ent based methods such as SGD for weight optimisation due
to the large parameter space of modern architectures (see,
e.g., Elsken, Metzen, and Hutter, for a survey).

More recently, state-of-the-art one-shot search techniques
such as ENAS (Efficient Neural Architecture Search) and
DARTS (Differentiable Architecture Search) have allowed
to bring a gradient-based approach to NAS through the use
of intelligent weight-sharing schemes (Liu, Simonyan, and
Yang 2018; Pham et al. 2018). In this work, we use the
DARTS search space, which is constrained but still obtained
state-of-the-art performance on benchmark natural language
tasks (Li and Talwalkar 2019).

Approach
Sender/Receiver communication
We study language emergence in a referential game inspired
by the signalling games proposed by Lewis (1969). In this
game, one agent (called the sender) observes an image and
generates a discrete message. The other agent, the receiver
of the message, uses the message to select the right image
from a set of images containing both the sender image and
several distractor images. Since the information shown to
the sender agent is crucial to the receivers success, this setup
urges the two agents to come up with a communication pro-
tocol that conveys the right information.

Formally, our referential game is similar to Havrylov and
Titov (2017):
1. The meaning space of the game consists of a collection D of K

images {d0, d1, ..., dK}, represented by z-dimensional feature
vectors.

2. In each round i of the game, a target item di is randomly sampled
from D, along with a set C of n distractor items.

3. The sender agent s of the game, parametrised by a neural net-
work, is given item di and generates a discrete message mi from
a vocabulary V . The message is capped to a max message length
of L.

4. The receiver agent r, also parametrised by a neural network, re-
ceives message mi and uses it to identify di in the union of di
and C.

We use z = 512, and n = 3 and train agents with Gumbel-
Softmax (Jang, Gu, and Poole 2017a) based on task-success.

Language Transmission Engine
We introduce both cultural and genetic evolution to this
game through a process that we call the Language Transmis-
sion Engine (LTE), which is depicted in Figure 1.2 Similar

2We will make the code publicly available upon acceptance.



to Cogswell et al. (2019), we create a population of com-
municating agents. In every training iteration, two random
agents are sampled to play the game. This forces the agents
to adopt a simpler language naturally: to succeed they must
be able to communicate or understand all opposing agents.
In our setup, agents are either sender or receiver, they do not
switch roles during their lifetime.

Figure 1: The Language Transmission Engine: Agent pairs
are randomly sampled from each population and trained. Af-
ter l training steps, a portion α of the population is culled.

Cultural evolution To model cultural evolution in the
LTE, we periodically replace agents in the population with
newly initialised agents. Cultural evolution is implicitly
modelled in this setup, as new agents have to learn to com-
municate with agents that already master the task. Following
Cogswell et al., we experiment with three different methods
to select the agents that are replaced: randomly (no selection
pressure), replacing the oldest agents or replacing the agents
with the lowest fitness (as defined in Section ). We call these
setups cu-random, cu-age and cu-best, respectively.

Genetic evolution To model genetic evolution, rather than
periodically replacing agents with randomly initialised new
agents, we instead mutate the most successful agents and
replace the worst agents with variations of the best agents,
as outlined in Section . Note that cultural evolution is still
implicitly modelled in this setup, as new agents still have to
learn to communicate with older agents. Therefore, we call
this setup with the term co-evolution.

Culling We refer to the selection process and subsequent
mutation or re-initialisation step as culling. In biology,
culling is the process of artificially removing organisms
from a group to promote certain characteristics, so, in this
case, culling consists of removing a subset of the worst
agents and replacing them with variations of the best ar-
chitecture. The proportion of agents from each population
selected to be mutated is determined by the culling rate α,
where α ∈ [0, 1). The culling interval l defines the number
of iterations between culling steps. A formalisation of the
LTE can be found in appendix .

Mutation Algorithm We base potential mutations on the
RNN cell search space DARTS, defined by Liu, Simonyan,
and Yang (2018). This space includes recurrent cells with up
toN nodes, where each node n1, n2, ..., nN can take the out-
put of any preceding nodes including n0, which represents
the cell’s input. All potential connections are modulated by
an activation function, which can be the identity function,
Tanh, Sigmoid or ReLU. Following Liu, Simonyan, and
Yang (2018) and Pham et al. (2018), we enhance each op-
eration with a highway bypass (Zilly et al. 2016) and the
average of all intermediate nodes is treated as the cell out-
put.

To sample the initial model, we sample a random cell
with a single node (N = 1). As this node must necessar-
ily be connected to the input, the only variation stems from
the possible activation functions applied to the output of n1,
resulting in four possible starting configurations. We set a
node cap of N = 8. We mutate cells by randomly sampling
an architecture which is one edit step away from the pre-
vious architecture. Edit steps are uniformly sampled from
i) changing an incoming connection, ii) changing an output
operation or iii) adding a new node; the mutation location is
uniformly sampled from all possible mutations.3 Note that
while we use the DARTS search space to define potential
mutations, contrary to Liu, Simonyan, and Yang, we do not
use differentiation to sample new architectures based on a
selection criterion.

Fitness Measure

The fitness criterion that we use in both the cu-best and
co-evolution setup is based on task performance. How-
ever, rather than considering agents’ performance right be-
fore the culling step, we consider the age of the youngest
agent in the population (defined in terms of the number of
batches that it was trained on) and for every agent compute
their performance up until when they had that age. For any
agent aj in population A this is defined as:

fitness(aj) =
1

TA

TA∑
t=0

L(atj) (1)

where TA = mina∈A T (a) is the age T (a) of the youngest
agent in the population, and L(atj) is the loss of agent aj at
time step t. This fitness criterion is not biased towards older
agents, that have seen already more data and have simply
converged more. It is thus not only considering task per-
formance but also the speed at which this performance is
reached.

Experiments
We test the LTE framework on a compositionally defined
image dataset, using a range of different selection mecha-
nisms.

3For a formal description of the mutation process, we refer to
Appendix .



Dataset
In all our experiments, we use a modified version of the
Shapes dataset (Andreas et al. 2015), which consists of 30
by 30 pixel images of 2D objects, characterised by shape
(circle, square, triangle), colour (red, green, blue), and size
(small, big). While every image has a unique symbolic de-
scription – consisting of the shape, colour and size of the
object and its horizontal and vertical position in a 3x3 grid
– one symbolic representation maps to multiple images, that
differ in terms of exact pixels and object location. We use
80k, 8k, 40k images for train, validation and test sets, re-
spectively. Some example images are depicted in Figure 2.

Figure 2: The modified Shapes task consists of showing an
image the sender, and then letting the receiver deduce from
the sender’s message which image out of the target and k
distractors is the correct one.

We pre-train a CNN feature extractor for the images in a
two-agent setting of the task (see Appendix for more de-
tails).

Architecture and Training
For our co-evolution experiments, we use the DARTS search
space as described above. For all cultural evolution ap-
proaches, we use an LSTM (Hochreiter and Schmidhuber
1997) for both the sender and receiver architecture (see Ap-
pendix for more details). Unless otherwise specified, we
use the same sizes and hyper-parameters for all models. The
sender and receiver models have a hidden size of 64 for
the recurrent layer and an embedding layer of size 64. Fur-
ther, we use a vocabulary size V of 4, with an additional
bound token serving as the indicator for beginning and end-
of-sequence. We limit the maximum length of a sentence L
to 5.

We back-propagate gradients through the discrete step
outputs (message) of the sender by using the Straight-
Through (ST) Gumbel-Softmax Estimator (Jang, Gu, and
Poole 2017b). We run all experiments with a fixed tempera-
ture τ = 1.2. We use the default Pytorch (Paszke et al. 2017)
Adam (Kingma and Ba 2015) optimiser with a learning rate

of 0.001 and a batch-size of 1024. Note that the optimiser is
reset for every batch.

We use a population size of 16 senders and 16 receivers
for all multi-agent experiments. The culling rate α is set to
0.25 or four agents, and we cull (re-initialise or mutate) ev-
ery l = 5k iterations (batch). We run the experiments for a
total of I = 500k iterations, and evaluate the populations
before each culling step.

Evaluation
We use a range of metrics to evaluate both the population of
agents and the emerged languages.

Jaccard Similarity We measure the consistency of the
emerged languages throughout the population using Jaccard
Similarity, which is defined as the ratio between the size of
the intersection and the union of two sets. We sample 200
messages per input image for each possible sender-receiver
pair and average the Jaccard Similarity of the samples over
the population. A high Jaccard Similarity between two mes-
sages is an indication that the same tokens are used in both
messages.

Proportion of Unique Matches We compute how similar
the messages that different agents emit for the same inputs
by looking at all possible (sender, message) pairs for one
input and assess whether they are the same. This metric is 1
when all agents always emit the same messages for the same
inputs.

Number of Unique Messages We compute the average
number of unique messages generated by each sender in
the population. An intuitive reference point for this metric
is the number of images with distinct symbolic representa-
tions. If agents generate more messages than expected by
this reference point, this demonstrates that they use multi-
ple messages for the images that are – from a task perspec-
tive – identical. A smaller number of unique messages, on
the other hand, indicates that the agent is using a simpler
language which is underspecified compared to the symbolic
description of the image. Higher numbers of unique mes-
sages

Topographic Similarity Topographic similarity, used in
a similar context by Lazaridou et al. (2018), represents the
similarity between the meaning space (defined by the sym-
bolic representations) and the signal space (the messages
sent by an agent). It is defined as the correlation between the
distances between pairs in meaning space and the distances
between the corresponding messages in the signal space. We
compute the topographic similarity for an agent by sampling
5,000 pairs of symbolic inputs and corresponding messages
and compute the Pearson’s ρ correlation between the cosine
similarity of the one-hot encoded symbolic input pairs and
the cosine similarity of the one-hot encoded message pairs.



Average Population Convergence To estimate the speed
of learning of the agents in the population, estimate the av-
erage population convergence. For each agent, at each point
in time, this is defined as the agent’s average performance
from the time it was born until it had the age of the current
youngest agent in the population (analogous to the fitness
criterion defined in Section ). To get the average population
convergence, we take we average those values for all agents
in the population.

Average Agent Entropy We compute the average cer-
tainty of sender agents in their generation process by com-
puting and averaging their entropy during generation.

Results
We now present a detailed comparison of our cultural and
co-evolution setups. For each approach, we average over
four random seeds and display the standard deviation error
in plots. To analyse the evolution of both agents and lan-
guages, we consider the development of all previously out-
lined metrics over time. We then test the most successful
converged languages and architectures in a single sender-
receiver setup, to assess the impact of cultural and ge-
netic evolution more independently. In these experiments,
we compare also directly to a single sender-receiver base-
line, which is impossible for most of the metrics we con-
sider in this paper. Finally, we briefly consider the emerged
architectures from a qualitative perspective.

Task performance
We first confirm that all setups converge to a solution to the
task. As can be seen in Figure 3, all populations converge
to an almost perfect solution to the game. The cu-age ap-
proach slightly outperforms the other approaches, with an
accuracy that surpasses the 95% accuracy mark. Note that,
due to the ever-changing population, the accuracy at any
point in time is an average of both ‘children’ and ‘adults’,
that communicate with different members of the population.

Figure 3: Average Population Accuracy of final populations.

Agent behaviour
To assess the behaviour of the agents over time, we monitor
their average message entropy convergence speed. As can be
seen in Figure 4, the co-evolution setup results in the
lowest average entropy scores, the messages that they assign

to one particular image will thus have lower variation than in
the other setups. Of the cultural evolution setups, the lowest
entropy score is achieved in the cu-best setup.

Figure 4: Average Agent Entropy over time.

Figure 5 shows the average population convergence over
time. We again observe a clear difference between cul-
tural evolution only and co-evolution, with an immediately
much lower convergence time for co-evolution and a slightly
downward trending curve.

Figure 5: Average convergence for all cultural transmission
modes and evolution.

Language Analysis
To check the consistencies of languages within a population,
we compare the Jaccard Similarity and the Average Propor-
tion of Unique Matches, which we plot in Figure 6. This
shows that, compared to cultural evolution only, not only
are the messages in co-evolution more similar across agents
(higher Jaccard Similarity), but also that agents are consider-
ably more aligned for the same inputs (less unique matches).

To assess the level of structure of the emerged languages,
we plot the average Topographic Similarity and the Aver-
age Number of Unique Messages generated by all senders
(Figure 7). The co-evolution condition again outperforms all
cultural only conditions, with a simpler language (the num-
ber of the unique messages closer to the symbolic reference



Figure 6: Average Jaccard Similarity and proportion of mes-
sage matches for all cultural transmission modes and evolu-
tion

point) that is structurally more similar to the symbolic rep-
resentation of the input (higher Topographical Similarity).

Architecture Analysis
In Figure 8 we show the co-evolution of an agent and a sam-
ple of its language during three selected iterations in the co-
evolution setup.

Strikingly, the best sender architecture does not evolve
from its original form, which could point towards the limi-
tations of our search strategy and space. On the contrary, the
receiver goes through quite some evolution steps and con-
verges into a significantly more complex architecture than
its original form. While this is a single instance of the evolu-
tion mechanism, we find the preference for simpler senders
and complex receivers consistent for different seeds. The to-
tal number of seen receiver architectures during training was
264, while only 50 for the sender architectures. Throughout
training, twenty different sender architectures were selected
as the best, whereas only five were ever selected for the
sender. A wider exploration of the search space by receivers
suggests that more architectural complexity is preferred in
the receiver role compared to the sender role.

Qualitatively, we also observe a unification of language
throughout evolution in Figure 8, which is also supported by
Figure 7. The population of senders starts with eleven differ-
ent unique messages and ends with only two to describe the
same input image. We will leave a more detailed analysis of
the evolved architectures for future work.

Frozen Experiments
With a series of experiments we test the a priori suitability
of the evolved languages and agents for the task at hand, by
monitoring the accuracy of new agents that are paired with
converged agents and train them from scratch.

We focus, in particular, on training receivers with a frozen
sender from different setups, which allows us to assess 1)
whether cultural evolution made languages evolve to be
more easily picked up by new agents 2) whether the genetic

Figure 7: Average Number of Unique Messages and To-
pographic Similarity for all cultural evolution modes and
co-evolution. For comparison, we also plot the number of
unique messages for a symbolic solution that fully encodes
all relevant features of the image (since we have three possi-
ble shapes and colours, two possible sizes, and a 3 × 3 grid
of possible positions, this symbolic reference solution has
3× 3× 2× 9 = 162 distinct messages.

evolution made architectures converge more quickly when
faced with this task. We compare the accuracy development
of:

• An LSTM receiver trained with a frozen sender taken
from cu-best;

• An evolved receiver trained with a frozen evolved sender.

For both these experiments, we compare with two baselines:

• The performance of a receiver agent trained from scratch
along with a receiver agent that has either the cu architec-
ture or the evolved co architecture (cu-baseline and
co-baseline, respectively);

• The performance of an agent trained with an
agent that is pretrained in the single agent setup,
with either the cu architecture or an evolved ar-
chitecture (cu-baseline-pretrained and
co-baseline-pretrained).

Each experiment is run 10 times, keeping the same
frozen agent. The results confirm cultural evolution con-
tributes to the learnability and suitability of emerging lan-
guages: the cu-best accuracy (green line) converges
substantially quicker and is substantially higher than the
cu-baseline-pretrained accuracy (orange line).
Selective pressure on the language appears to be impor-
tant: the resulting languages are only easier to learn in
the cu-best setup.4 They also show that the agents

4cu-age and cu-random are ommitted from the plot for
clarity reasons.



Figure 8: Evolution of the best sender and receiver architecture according to convergence, and the evolution of the population’s
message description of the same input through iterations. The bold messages represent the message outputted by the best sender
whose architecture is pictured above. The count of each message represents the number of agents in the population which uttered
this exact sequence.

benefit also from the genetic evolution: the best accu-
racies are achieved in the co-evolution setup (red line).
The difference between the cu-baseline (blue) and the
co-baseline (brown) further shows that even if the
evolved architectures are trained from scratch, they perform
much better than a baseline model trained from scratch. The
difference between the co-baseline-pretrained
(only genetic evolution, purple line) and the co-evolution
of agents and language line (red line) illustrates that ge-
netic evolution alone is not enough: while a new evolved re-
ceiver certainly benefits from learning from a (from scratch)
pretrained evolved sender, without the cultural transmission
pressure, it’s performance is still substantially below a re-
ceiver that learns from an evolved sender whose language
was evolved as well.

Conclusion
In this paper, we introduced a language transmission bottle-
neck in a referential game, where new agents have to learn
the language by playing with more experienced agents. To
overcome such bottleneck, we enabled both the cultural evo-
lution of language and the genetic evolution of agents, using
a new Language Transmission Engine. Using a battery of
metrics, we monitored their respective impact on commu-
nication efficiency, degree of linguistic structure and intra-
population language homogeneity. While we could find im-
portant differences in between cultural evolution strategies,
it is when we included genetic evolution that agents scored
best. In a second experiment, we paired new agents with
evolved languages and agents and again confirmed that,
while cultural evolution makes a language easier to learn,
co-evolution leads to the best communication.

In future research, we would like to apply the Lan-
guage Transmission Engine on new, more complex tasks

Figure 9: Receiver accuracies trained with different types of
frozen senders.



and further increase our understanding of the properties of
the emerged languages and architectures. Additionally, we
would like to investigate other neuro-evolution techniques
and apply them to different search spaces.
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Appendix
Language Transmission Engine
We formalise our Language Transmission process in the
pseudo code shown in Algorithm 1. We select hyper-
parameters l as the number of iterations or batches shown
between culling steps, and I as the total number of itera-
tions.

Algorithm 1 Language Transmission Engine

S ← {s0, s1..., sN}
R← {r0, r1..., rN}
i← 1
while i ≤ I do

for batch b in D do
Sample ŝ from S
Sample r̂ from R
train(ŝ, r̂, b)
if i mod l = 0 then

cull(S,R)
end if
i← i+ 1

end for
end while

Mutation Algorithms Pseudo-code

Algorithm 2 Genotype-level Mutation

procedure mg(genotype)
g ← copy(genotype)
a← U(1, 3)
n← U(1, len(g))
if a = 1 then

p← U [ReLU, I, tanh, σ]
n.activation← p

end if
if a = 2 then

r ← U(1, n)
n.connection← r

end if
if a = 3 then

n′ ← new node()
p← U [ReLU, I, tanh, σ]
r ← U(1, len(g))
n′.activation← p
n′.connection← r
g.append(n′)

end if
return g

end procedure

The genotype mutation is described in pseudo-code by al-
gorithm 2, and takes as input a genotype containing nodes
describing the cell. The genotype is mutated by either chang-
ing the input connection or primitive (output activation func-
tion) for a randomly sampled node n, or adding a new node

altogether. See section for explanations on the workings of
the DARTS cell structure.

Algorithm 3 Population-level Mutation

procedure mutate(P)
p′ ← argminconvergence(P )
p← π(P )
for pi in p do

pi.genotype←mg(p′.genotype)
end for

end procedure

In order to mutate a population P using π as a replace-
ment policy, we use the process outlined in algorithm 3.

Agent Architecture
Sender Architecture The sender architecture comprises
of a linear layer input mapping the input feature size (512)
to the hidden size. The image feature vector is therefore
mapped to the same dimension as the RNN layer, where it is
used as the initial hidden state. When training, for each step
of the sender RNN we apply the cell and use the straight-
through Gumbel-Softmax trick to be able back-propagate
gradients through the discrete message output. During evalu-
ation however, we sample the categorical distribution at each
step to produce each token in the sentence.

Receiver Architecture The receiver architecture is sim-
pler and takes as an input the message outputted by the
sender and outputs a vector of input feature size (512). A
single embedding matrix is used to encode the sender’s mes-
sage. During training the message is linearly transformed us-
ing the embedding matrix, while during the evaluation pass
the discrete message outputs of the sender are used to map
to the specific embedding dimensions. The embedded mes-
sage is then passed to the RNN layer, and the final state of
the RNN is linearly mapped back to the feature size. Doing
so allows us to obtain a prediction for each image feature
(distractors and true image), by comparing the alignment be-
tween the receiver output and the respective feature vectors.

Feature Extraction
In order to obtain image features, we pre-trained a convolu-
tional model on the task using the raw image as input. Due to
the input size requirements of the convolutional model, we
resize the images linearly to be 128 by 128 (height, width)
by 3 (RGB channels). We used early stopping conditions on
the validation accuracy, an embedding size of 256, and hid-
den size of 512. The two agents are otherwise trained with
the same parameters as other experiments: vocab size and
max sentence length of 5, Adam optimizer with learning rate
of 0.001.

For the visual module itself, we used a similar architec-
ture to that in Choi, Lazaridou, and de Freitas (2018) albeit
smaller. We used a five-layer convolution network with 20
filters, and a kernel size and stride of 3 for all layers. For
every convolutional layer, ReLU activation was applied on



the output, after a Batch normalization step with no bias pa-
rameter. The linear layer which followed the convolutional
layers had output dimensions of 512 and a ReLU activation
function. This allows us to obtain image features of size 512,
which we then used for all experiments.

Additional Figures and Analysis

Figure 10: Average Population Accuracy for all Iterations


